23 research outputs found

    Life cycle assessment of bacterial cellulose production

    Get PDF
    Purpose Bacterial cellulose (BC), obtained by fermentation, is an innovative and promising material with a broad spectrum of potential applications. Despite the increasing efforts towards its industrialization, a deeper understanding of the environmental impact related to the BC production process is still required. This work aimed at quantifying the environmental, health, and resource depletion impacts related to a production of BC. Methods An attributional life cycle assessment (LCA) was applied to a process design of production of BC, by static culture, following a cradle-to-gate approach. The LCA was modeled with GaBi Pro Software using the ReCiPe 2016 (H) methodology with environmental impact indicators at midpoint level. The functional unit was defined as 1 kg of BC (dry mass), in 138.8 kg of water. Results From the total used resources (38.9 ton/kg of BC), water is the main one (36.1 ton/kg of BC), most of which (98%) is returned to fresh waters after treatment. The production of raw materials consumed 17.8 ton of water/kg of BC, 13.8 ton/kg of BC of which was for the production of carton packaging, culture medium raw materials, and sodium hydroxide (for the washing of BC). The remaining consumed water was mainly for the fermentation (3.9 ton/kg) and downstream process (7.7 ton/kg). From the identified potential environmental impacts, the production of raw materials had the highest impact, mainly on Climate change, Fossil depletion, Human toxicity, non-cancer, and Terrestrial toxicity. The sodium dihydrogen phosphate production, used in the culture medium, showed the highest environmental impacts in Human toxicity, non-cancer and Terrestrial ecotoxicity, followed by corn syrup and carton production. The static culture fermentation and downstream process showed impact in Climate change and Fossil depletion. Conclusions Per se, the BC production process had a small contribution to the consumption of resources and environmental impact of the BC global life cycle.This study was supported by the Portuguese Foundation for Science and Technology (FCT) within the scope of the strate gic funding of UIDB/04469/2020 and UIDB/00511/2020 units and MultiBiorefinery project (SAICTPAC/0040/2015-POCI-01-0145- FEDER-016403). This study was also supported by The Navigator Company through the I&D no. 21874, “Inpactus-–Produtos e Tecno logias Inovadores a partir do Eucalipto”, funded through the European Regional Development Fund (ERDF) and the Programa Operacional Competitividade e Internacionalização (POCI) is greatly acknowl edged. The work by Belmira Neto was fnancially supported by Base Funding—UIDB/00511/2020 of the Laboratory for Process Engineer ing, Environment, Biotechnology and Energy—LEPABE—funded by national funds through the FCT/MCTES (PIDDAC).info:eu-repo/semantics/publishedVersio

    In vitro and in vivo studies of a novel bacterial cellulose-based acellular bilayer nanocomposite scaffold for the repair of osteochondral defects

    No full text
    Jyoti V Kumbhar,1 Sachin H Jadhav,2 Dhananjay S Bodas,1 Amruta Barhanpurkar-Naik,3 Mohan R Wani,3 Kishore M Paknikar,1 Jyutika M Rajwade1 1Nanobioscience, 2Animal Sciences Division, Agharkar Research Institute, 3National Centre for Cell Science, Savitribai Phule Pune University, Pune, India Abstract: Bacterial cellulose (BC) is a naturally occurring nanofibrous biomaterial which exhibits unique physical properties and is amenable to chemical modifications. To explore whether this versatile material can be used in the treatment of osteochondral defects (OCD), we developed and characterized novel BC-based nanocomposite scaffolds, for example, BC-hydroxyapatite (BC-HA) and BC-glycosaminoglycans (BC-GAG) that mimic bone and cartilage, respectively. In vitro biocompatibility of BC-HA and BC-GAG scaffolds was established using osteosarcoma cells, human articular chondrocytes, and human adipose-derived mesenchymal stem cells. On subcutaneous implantation, the scaffolds allowed tissue ingrowth and induced no adverse immunological reactions suggesting excellent in vivo biocompatibility. Implantation of acellular bilayered scaffolds in OCD created in rat knees induced progressive regeneration of cartilage tissue, deposition of extracellular matrix, and regeneration of subchondral bone by the host cells. The results of micro-CT revealed that bone mineral density and ratio of bone volume to tissue volume were significantly higher in animals receiving bilayered scaffold as compared to the control animals. To the best of our knowledge, this study proves for the first time, the functional performance of acellular BC-based bilayered scaffolds. Thus, this strategy has great potential for clinical translation and can be used in repair of OCD. Keywords: bacterial cellulose-hydroxyapatite, bacterial cellulose-glycosaminoglycan, osteochondral defect, stem cell differentiation, acellular bilayer scaffold&nbsp
    corecore