359 research outputs found
Incremental value of contrast myocardial perfusion to detect intermediate versus severe coronary artery stenosis during stress-echocardiography
<p>Abstract</p> <p>Background</p> <p>We aimed to compare the incremental value of contrast myocardial perfusion imaging (MPI) for the detection of intermediate versus severe coronary artery stenosis during dipyridamole-atropine echocardiography (DASE).</p> <p>Wall motion (WM) assessment during stress-echocardiography demonstrates suboptimal sensitivity to detect coronary artery disease (CAD), particularly in patients with isolated intermediate (50%-70%) coronary stenosis.</p> <p>Methods</p> <p>We performed DASE with MPI in 150 patients with a suspected chest pain syndrome who were given clinical indication to coronary angiography.</p> <p>Results and discussion</p> <p>When CAD was defined as the presence of a ≥50% stenosis, the addition of MPI increased sensitivity (+30%) and decreased specificity (-14%), with a final increase in total diagnostic accuracy (+16%, p < 0.001). The addition of MPI data substantially increased the sensitivity to detect patients with isolated intermediate stenosis from 37% to 98% (p < 0.001); the incremental sensitivity was much lower in patients with severe stenosis, from 85% to 96% (p < 0.05), at the expense of a higher decrease in specificity and a final decrease in total diagnostic accuracy (-18%, p < 0.001).</p> <p>Conclusions</p> <p>The addition of MPI on top of WM analysis during DASE increases the diagnostic sensitivity to detect obstructive CAD, whatever its definition (≥50% or > 70% stenosis), but it is mainly driven by the sensitivity increase in the intermediate group (50%-70% stenosis).</p> <p>The total diagnostic accuracy increased only when defining CAD as ≥50% stenosis, since in patients with severe stenosis (> 70%) the decrease in specificity is not counterbalanced by the minor sensitivity increase.</p
Ice-sheet collapse and sea-level rise at the Bølling warming 14,600 years ago
Past sea-level records provide invaluable information about the response of ice sheets to climate forcing. Some such records suggest that the last deglaciation was punctuated by a dramatic period of sea-level rise, of about 20 metres, in less than 500 years. Controversy about the amplitude and timing of this meltwater pulse (MWP-1A) has, however, led to uncertainty about the source of the melt water and its temporal and causal relationships with the abrupt climate changes of the deglaciation. Here we show that MWP-1A started no earlier than 14,650 years ago and ended before 14,310 years ago, making it coeval with the Bolling warming. Our results, based on corals drilled offshore from Tahiti during Integrated Ocean Drilling Project Expedition 310, reveal that the increase in sea level at Tahiti was between 12 and 22 metres, with a most probable value between 14 and 18 metres, establishing a significant meltwater contribution from the Southern Hemisphere. This implies that the rate of eustatic sea-level rise exceeded 40 millimetres per year during MWP-1A
Abnormalities in autonomic function in obese boys at-risk for insulin resistance and obstructive sleep apnea.
Study objectivesCurrent evidence in adults suggests that, independent of obesity, obstructive sleep apnea (OSA) can lead to autonomic dysfunction and impaired glucose metabolism, but these relationships are less clear in children. The purpose of this study was to investigate the associations among OSA, glucose metabolism, and daytime autonomic function in obese pediatric subjects.MethodsTwenty-three obese boys participated in: overnight polysomnography; a frequently sampled intravenous glucose tolerance test; and recordings of spontaneous cardiorespiratory data in both the supine (baseline) and standing (sympathetic stimulus) postures.ResultsBaseline systolic blood pressure and reactivity of low-frequency heart rate variability to postural stress correlated with insulin resistance, increased fasting glucose, and reduced beta-cell function, but not OSA severity. Baroreflex sensitivity reactivity was reduced with sleep fragmentation, but only for subjects with low insulin sensitivity and/or low first-phase insulin response to glucose.ConclusionsThese findings suggest that vascular sympathetic activity impairment is more strongly affected by metabolic dysfunction than by OSA severity, while blunted vagal autonomic function associated with sleep fragmentation in OSA is enhanced when metabolic dysfunction is also present
Cross-Modal Object Recognition Is Viewpoint-Independent
BACKGROUND: Previous research suggests that visual and haptic object recognition are viewpoint-dependent both within- and cross-modally. However, this conclusion may not be generally valid as it was reached using objects oriented along their extended y-axis, resulting in differential surface processing in vision and touch. In the present study, we removed this differential by presenting objects along the z-axis, thus making all object surfaces more equally available to vision and touch. METHODOLOGY/PRINCIPAL FINDINGS: Participants studied previously unfamiliar objects, in groups of four, using either vision or touch. Subsequently, they performed a four-alternative forced-choice object identification task with the studied objects presented in both unrotated and rotated (180 degrees about the x-, y-, and z-axes) orientations. Rotation impaired within-modal recognition accuracy in both vision and touch, but not cross-modal recognition accuracy. Within-modally, visual recognition accuracy was reduced by rotation about the x- and y-axes more than the z-axis, whilst haptic recognition was equally affected by rotation about all three axes. Cross-modal (but not within-modal) accuracy correlated with spatial (but not object) imagery scores. CONCLUSIONS/SIGNIFICANCE: The viewpoint-independence of cross-modal object identification points to its mediation by a high-level abstract representation. The correlation between spatial imagery scores and cross-modal performance suggest that construction of this high-level representation is linked to the ability to perform spatial transformations. Within-modal viewpoint-dependence appears to have a different basis in vision than in touch, possibly due to surface occlusion being important in vision but not touch
Diabetes Is an Independent Risk Factor for Severe Nocturnal Hypoxemia in Obese Patients. A Case-Control Study
Type 2 diabetes mellitus (T2DM) and obesity have become two of the main threats to public health in the Western world. In addition, obesity is the most important determinant of the sleep apnea-hypopnea syndrome (SAHS), a condition that adversely affects glucose metabolism. However, it is unknown whether patients with diabetes have more severe SAHS than non-diabetic subjects. The aim of this cross-sectional case-control study was to evaluate whether obese patients with T2DM are more prone to severe SAHS than obese non-diabetic subjects.Thirty obese T2DM and 60 non-diabetic women closely matched by age, body mass index, waist circumference, and smoking status were recruited from the outpatient Obesity Unit of a university hospital. The exclusion criteria included chronic respiratory disease, smoking habit, neuromuscular and cerebrovascular disease, alcohol abuse, use of sedatives, and pregnancy. Examinations included a non-attended respiratory polygraphy, pulmonary function testing, and an awake arterial gasometry. Oxygen saturation measures included the percentage of time spent at saturations below 90% (CT90). A high prevalence of SAHS was found in both groups (T2DM:80%, nondiabetic:78.3%). No differences in the number of sleep apnea-hypopnea events between diabetic and non-diabetic patients were observed. However, in diabetic patients, a significantly increase in the CT90 was detected (20.2+/-30.2% vs. 6.8+/-13,5%; p = 0.027). In addition, residual volume (RV) was significantly higher in T2DM (percentage of predicted: 79.7+/-18.1 vs. 100.1+/-22.8; p<0.001). Multiple linear regression analyses showed that T2DM but not RV was independently associated with CT90.T2DM adversely affects breathing during sleep, becoming an independent risk factor for severe nocturnal hypoxemia in obese patients. Given that SAHS is a risk factor of cardiovascular disease, the screening for SAHS in T2DM patients seems mandatory
Marine mammals and Good Environmental Status: Science, Policy and Society; Challenges and Opportunities
The Marine Strategy Framework Directive has become the key instrument for marine conservation in European seas. We review its implementation, focusing on cetacean biodiversity, using
the examples of Spain and the Regional Seas Convention, OSPAR. The MSFD has been widely criticised for legal vagueness, lack of coordination,
uncertainty about funding, and poor governance; its
future role within EU Integrated Maritime Policy
remains unclear. Nevertheless, the first stages of the
process have run broadly to schedule: current status,
environmental objectives and indicators have been
described and the design of monitoring programmes is in progress, drawing on experience with other environmental
legislation. The MSFD is now entering its
critical phase, with lack of funding for monitoring,
limited scope for management interventions, and
uncertainty about how conservation objectives will
be reconciled with the needs of other marine and
maritime sectors, being among the main concerns.
Clarity in governance, about the roles of the EU,
Member States, Regional Seas Conventions and
stakeholders, is needed to ensure success. However,
even if (as seems likely) good environmental status
cannot be achieved by 2020, significant steps will have been taken to place environmental sustainability
centre-stage in the development of Integrated Maritime
Policy for EU seas.Postprin
A novel small molecule target in human airway smooth muscle for potential treatment of obstructive lung diseases: a staged high-throughput biophysical screening
<p>Abstract</p> <p>Background</p> <p>A newly identified mechanism of smooth muscle relaxation is the interaction between the small heat shock protein 20 (HSP20) and 14-3-3 proteins. Focusing upon this class of interactions, we describe here a novel drug target screening approach for treating airflow obstruction in asthma.</p> <p>Methods</p> <p>Using a high-throughput fluorescence polarization (FP) assay, we screened a library of compounds that could act as small molecule modulators of HSP20 signals. We then applied two quantitative, cell-based biophysical methods to assess the functional efficacy of these molecules and rank-ordered their abilities to relax isolated human airway smooth muscle (ASM). Scaling up to the level of an intact tissue, we confirmed in a concentration-responsive manner the potency of the cell-based hit compounds.</p> <p>Results</p> <p>Among 58,019 compound tested, 268 compounds caused 20% or more reduction of the polarized emission in the FP assay. A small subset of these primary screen hits, belonging to two scaffolds, caused relaxation of isolated ASM cell <it>in vitro </it>and attenuated active force development of intact tissue <it>ex vivo</it>.</p> <p>Conclusions</p> <p>This staged biophysical screening paradigm provides proof-of-principle for high-throughput and cost-effective discovery of new small molecule therapeutic agents for obstructive lung diseases.</p
Fluorescent D-amino-acids reveal bi-cellular cell wall modifications important for Bdellovibrio bacteriovorous predation
Modification of essential bacterial peptidoglycan (PG) containing cell walls can lead to antibiotic resistance, for example β-lactam resistance by L,D-transpeptidase activities. Predatory Bdellovibrio bacteriovorus are naturally antibacterial and combat infections by traversing, modifying and finally destroying walls of Gram-negative prey bacteria, modifying their own PG as they grow inside prey. Historically, these multi-enzymatic processes on two similar PG walls have proved challenging to elucidate. Here, with a PG labelling approach utilizing timed pulses of multiple fluorescent D-amino acids (FDAAs), we illuminate dynamic changes that predator and prey walls go through during the different phases of bacteria:bacteria invasion. We show formation of a reinforced circular port-hole in the prey wall; L,D-transpeptidaseBd mediated D-amino acid modifications strengthening prey PG during Bdellovibrio invasion and a zonal mode of predator-elongation. This process is followed by unconventional, multi-point and synchronous septation of the intracellular Bdellovibrio, accommodating odd- and even-numbered progeny formation by non-binary division
- …