37 research outputs found

    The revised Bethesda guidelines: extent of utilization in a university hospital medical center with a cancer genetics program

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 1996, the National Cancer Institute hosted an international workshop to develop criteria to identify patients with colorectal cancer who should be offered microsatellite instability (MSI) testing due to an increased risk for Hereditary Nonpolyposis Colorectal Cancer (HNPCC). These criteria were further modified in 2004 and became known as the revised Bethesda Guidelines. Our study aimed to retrospectively evaluate the percentage of patients diagnosed with HNPCC tumors in 2004 who met revised Bethesda criteria for MSI testing, who were referred for genetic counseling within our institution.</p> <p>Methods</p> <p>All HNPCC tumors diagnosed in 2004 were identified by accessing CoPath, an internal database. Both the Tumor Registry and patients' electronic medical records were accessed to collect all relevant family history information. The list of patients who met at least one of the revised Bethesda criteria, who were candidates for MSI testing, was then cross-referenced with the database of patients referred for genetic counseling within our institution.</p> <p>Results</p> <p>A total of 380 HNPCC-associated tumors were diagnosed at our institution during 2004 of which 41 (10.7%) met at least one of the revised Bethesda criteria. Eight (19.5%) of these patients were referred for cancer genetic counseling of which 2 (25%) were seen by a genetics professional. Ultimately, only 4.9% of patients eligible for MSI testing in 2004 were seen for genetic counseling.</p> <p>Conclusion</p> <p>This retrospective study identified a number of barriers, both internal and external, which hindered the identification of individuals with HNPCC, thus limiting the ability to appropriately manage these high risk families.</p

    Suppression of colitis-related mouse colon carcinogenesis by a COX-2 inhibitor and PPAR ligands

    Get PDF
    BACKGROUND: It is generally assumed that inflammatory bowel disease (IBD)-related carcinogenesis occurs as a result of chronic inflammation. We previously developed a novel colitis-related mouse colon carcinogenesis model initiated with azoxymethane (AOM) and followed by dextran sodium sulfate (DSS). In the present study we investigated whether a cyclooxygenase (COX)-2 inhibitor nimesulide and ligands for peroxisome proliferator-activated receptors (PPARs), troglitazone (a PPARγ ligand) and bezafibrate (a PPARα ligand) inhibit colitis-related colon carcinogenesis using our model to evaluate the efficacy of these drugs in prevention of IBD-related colon carcinogenesis. METHODS: Female CD-1 (ICR) mice were given a single intraperitoneal administration of AOM (10 mg/kg body weight) and followed by one-week oral exposure of 2% (w/v) DSS in drinking water, and then maintained on the basal diets mixed with or without nimesulide (0.04%, w/w), troglitazone (0.05%, w/w), and bezafibrate (0.05%, w/w) for 14 weeks. The inhibitory effects of dietary administration of these compounds were determined by histopathological and immunohistochemical analyses. RESULTS: Feeding with nimesulide and troglitazone significantly inhibited both the incidence and multiplicity of colonic adenocarcinoma induced by AOM/DSS in mice. Bezafibrate feeding significantly reduced the incidence of colonic adenocarcinoma, but did not significantly lower the multiplicity. Feeding with nimesulide and troglitazone decreased the proliferating cell nuclear antigen (PCNA)-labeling index and expression of β-catenin, COX-2, inducible nitric oxide synthase (iNOS) and nitrotyrosine. The treatments increased the apoptosis index in the colonic adenocarcinoma. Feeding with bezafibrate also affected these parameters except for β-catenin expression in the colonic malignancy. CONCLUSION: Dietary administration of nimesulide, troglitazone and bezafibrate effectively suppressed the development of colonic epithelial malignancy induced by AOM/DSS in female ICR mice. The results suggest that COX-2 inhibitor and PPAR ligands could serve as an effective agent against colitis-related colon cancer development

    Gene therapy for monogenic liver diseases: clinical successes, current challenges and future prospects

    Get PDF
    Over the last decade, pioneering liver-directed gene therapy trials for haemophilia B have achieved sustained clinical improvement after a single systemic injection of adeno-associated virus (AAV) derived vectors encoding the human factor IX cDNA. These trials demonstrate the potential of AAV technology to provide long-lasting clinical benefit in the treatment of monogenic liver disorders. Indeed, with more than ten ongoing or planned clinical trials for haemophilia A and B and dozens of trials planned for other inherited genetic/metabolic liver diseases, clinical translation is expanding rapidly. Gene therapy is likely to become an option for routine care of a subset of severe inherited genetic/metabolic liver diseases in the relatively near term. In this review, we aim to summarise the milestones in the development of gene therapy, present the different vector tools and their clinical applications for liver-directed gene therapy. AAV-derived vectors are emerging as the leading candidates for clinical translation of gene delivery to the liver. Therefore, we focus on clinical applications of AAV vectors in providing the most recent update on clinical outcomes of completed and ongoing gene therapy trials and comment on the current challenges that the field is facing for large-scale clinical translation. There is clearly an urgent need for more efficient therapies in many severe monogenic liver disorders, which will require careful risk-benefit analysis for each indication, especially in paediatrics

    New frontiers of MRI in Crohn's disease: motility imaging, diffusion-weighted imaging, perfusion MRI, MR spectroscopy, molecular imaging, and hybrid imaging (PET/MRI)

    Full text link
    This article reviews the latest diagnostic advances in the evaluation of the CD, including functional studies on intestinal motility and molecular characterization of the inflammatory process at the level of the involved bowel. Molecular changes related to inflammation of the intestinal wall may be evaluated by different MRI techniques, including diffusion-weighted imaging, perfusion weighted imaging, in vivo spectroscopy, molecular imaging, and fusion imaging (PET-MRI)
    corecore