111 research outputs found

    Tendinopathy—from basic science to treatment

    Get PDF
    Chronic tendon pathology (tendinopathy), although common, is difficult to treat. Tendons possess a highly organized fibrillar matrix, consisting of type I collagen and various 'minor' collagens, proteoglycans and glycoproteins. The tendon matrix is maintained by the resident tenocytes, and there is evidence of a continuous process of matrix remodeling, although the rate of turnover varies at different sites. A change in remodeling activity is associated with the onset of tendinopathy. Major molecular changes include increased expression of type III collagen, fibronectin, tenascin C, aggrecan and biglycan. These changes are consistent with repair, but they might also be an adaptive response to changes in mechanical loading. Repeated minor strain is thought to be the major precipitating factor in tendinopathy, although further work is required to determine whether it is mechanical overstimulation or understimulation that leads to the change in tenocyte activity. Metalloproteinase enzymes have an important role in the tendon matrix, being responsible for the degradation of collagen and proteoglycan in both healthy patients and those with disease. Metalloproteinases that show increased expression in painful tendinopathy include ADAM (a disintegrin and metalloproteinase)-12 and MMP (matrix metalloproteinase)-23. The role of these enzymes in tendon pathology is unknown, and further work is required to identify novel and specific molecular targets for therapy

    Assessing public perception of a sand fly biting study on the pathway to a controlled 2 human infection model for cutaneous leishmaniasis

    Get PDF
    BACKGROUND: A controlled human infection model (CHIM) involves deliberate exposure of volunteers to pathogens to assess their response to new therapies at an early stage of development. We show here how we used public involvement to help shape the design of a CHIM to support future testing of candidate vaccines for the neglected tropical disease cutaneous leishmaniasis, a disease transmitted by the bite of infected sand flies in tropical regions. METHODS: We undertook a public involvement (PI) consultation exercise to inform development of a study to test the safety and effectiveness of a sand fly biting protocol using uninfected sand flies (FLYBITE: ClinicalTrials.gov ID NCT03999970 ) and a CHIM using Leishmania major-infected sand flies (LEISH_Challenge: ClinicalTrials.gov ID NCT04512742 ), both taking place in York, UK. We involved 10 members of the public including a patient research ambassador and a previous CHIM volunteer. The session took place at The University of York, UK and examined draft study volunteer-facing material and included the CHIM study design, potential adverse events and therapeutic interventions at study endpoints. A discussion of the scientific, ethical, humanitarian and economic basis for the project was presented to the participants to provoke discourse. An inductive, thematic analysis was used to identify the participants' key concerns. RESULTS: Themes were identified relating to i) quality of volunteer-facing written information, ii) improving study design, and iii) factors to motivate involvement in the research. Group participants responded positively to the overall study aims. Initial concerns were expressed about potential risks of study involvement, but further explanation of the science and mitigations of risk secured participant support. Participants provided advice and identified improved terminology to inform the volunteer-facing material. Lastly, treatment options were discussed, and excision of any cutaneous lesion was favoured over alternatives as a treatment. CONCLUSION: The consultation exercise provided invaluable information which led to improved study design and enhanced clarity in the volunteer-facing material. The session also reinforced the need to maintain public trust in scientific rigour prior to initiation of any study. The investigators hope that this description strengthens understanding of PI in clinical research, and encourages its use within other studies

    Gene expression and matrix turnover in overused and damaged tendons

    Get PDF
    Chronic, painful conditions affecting tendons, frequently known as tendinopathy, are very common types of sporting injury. The tendon extracellular matrix is substantially altered in tendinopathy, and these changes are thought to precede and underlie the clinical condition. The tendon cell response to repeated minor injuries or “overuse” is thought to be a major factor in the development of tendinopathy. Changes in matrix turnover may also be effected by the cellular response to physical load, altering the balance of matrix turnover and changing the structure and composition of the tendon. Matrix turnover is relatively high in tendons exposed to high mechanical demands, such as the supraspinatus and Achilles, and this is thought to represent either a repair or tissue maintenance function. Metalloproteinases are a large family of enzymes capable of degrading all of the tendon matrix components, and these are thought to play a major role in the degradation of matrix during development, adaptation and repair. It is proposed that some metalloproteinase enzymes are required for the health of the tendon, and others may be damaging, leading to degeneration of the tissue. Further research is required to investigate how these enzyme activities are regulated in tendon and altered in tendinopathy. A profile of all the metalloproteinases expressed and active in healthy and degenerate tendon is required and may lead to the development of new drug therapies for these common and debilitating sports injuries

    Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.

    Get PDF
    Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage
    corecore