10 research outputs found
High Prevalence of Nickel Allergy in an Overweight Female Population: A Pilot Observational Analysis
Deep brain stimulation compared with bariatric surgery for the treatment of morbid obesity: a decision analysis study
Object
Roux-en-Y gastric bypass is the gold standard treatment for morbid obesity, although failure rates may be high, particularly in patients with a BMI > 50 kg/m2. With improved understanding of the neuropsychiatric basis of obesity, deep brain stimulation (DBS) offers a less invasive and reversible alternative to available surgical treatments. In this decision analysis, the authors determined the success rate at which DBS would be equivalent to the two most common bariatric surgeries.
Methods
Medline searches were performed for studies of laparoscopic adjustable gastric banding (LAGB), laparoscopic Roux-en-Y gastric bypass (LRYGB), and DBS for movement disorders. Bariatric surgery was considered successful if postoperative excess weight loss exceeded 45% at 1-year follow-up. Using complication and success rates from the literature, the authors constructed a decision analysis model for treatment by LAGB, LRYGB, DBS, or no surgical treatment. A sensitivity analysis in which major parameters were systematically varied within their 95% CIs was used.
Results
Fifteen studies involving 3489 and 3306 cases of LAGB and LRYGB, respectively, and 45 studies involving 2937 cases treated with DBS were included. The operative successes were 0.30 (95% CI 0.247–0.358) for LAGB and 0.968 (95% CI 0.967–0.969) for LRYGB. Sensitivity analysis revealed utility of surgical complications in LRYGB, probability of surgical complications in DBS, and success rate of DBS as having the greatest influence on outcomes. At no values did LAGB result in superior outcomes compared with other treatments.
Conclusions
Deep brain stimulation must achieve a success rate of 83% to be equivalent to bariatric surgery. This high-threshold success rate is probably due to the reported success rate of LRYGB, despite its higher complication rate (33.4%) compared with DBS (19.4%). The results support further research into the role of DBS for the treatment of obesity
Leptin: a review of its peripheral actions and interactions
Following the discovery of leptin in 1994, the scientific and clinical communities have held great hope that manipulation of the leptin axis may lead to the successful treatment of obesity. This hope is not yet dashed; however the role of the leptin axis is now being shown to be ever more complex than was first envisaged. It is now well established that leptin interacts with pathways in the central nervous system and through direct peripheral mechanisms. In this review, we consider the tissues in which leptin is synthesized and the mechanisms which mediate leptin synthesis, the structure of leptin and the knowledge gained from cloning leptin genes in aiding our understanding of the role of leptin in the periphery. The discoveries of expression of leptin receptor isotypes in a wide range of tissues in the body have encouraged investigation of leptin interactions in the periphery. Many of these interactions appear to be direct, however many are also centrally mediated. Discovery of the relative importance of the centrally mediated and peripheral interactions of leptin under different physiological states and the variations between species is beginning to show the complexity of the leptin axis. Leptin appears to have a range of roles as a growth factor in a range of cell types: as be a mediator of energy expenditure; as a permissive factor for puberty; as a signal of metabolic status and modulation between the foetus and the maternal metabolism; and perhaps importantly in all of these interactions, to also interact with other hormonal mediators and regulators of energy status and metabolism such as insulin, glucagon, the insulin-like growth factors, growth hormone and glucocorticoids. Surely, more interactions are yet to be discovered. Leptin appears to act as an endocrine and a paracrine factor and perhaps also as an autocrine factor. Although the complexity of the leptin axis indicates that it is unlikely that effective treatments for obesity will be simply derived, our improving knowledge and understanding of these complex interactions may point the way to the underlying physiology which predisposes some individuals to apparently unregulated weight gain