1,945 research outputs found

    Microscopic Realization of the Kerr/CFT Correspondence

    Get PDF
    Supersymmetric M/string compactifications to five dimensions contain BPS black string solutions with magnetic graviphoton charge P and near-horizon geometries which are quotients of AdS_3 x S^2. The holographic duals are typically known 2D CFTs with central charges c_L=c_R=6P^3 for large P. These same 5D compactifications also contain non-BPS but extreme Kerr-Newman black hole solutions with SU(2)_L spin J_L and electric graviphoton charge Q obeying Q^3 \leq J_L^2. It is shown that in the maximally charged limit Q^3 -> J_L^2, the near-horizon geometry coincides precisely with the right-moving temperature T_R=0 limit of the black string with magnetic charge P=J_L^{1/3}. The known dual of the latter is identified as the c_L=c_R=6J_L CFT predicted by the Kerr/CFT correspondence. Moreover, at linear order away from maximality, one finds a T_R \neq 0 quotient of the AdS_3 factor of the black string solution and the associated thermal CFT entropy reproduces the linearly sub-maximal Kerr-Newman entropy. Beyond linear order, for general Q^3<J_L^2, one has a finite-temperature quotient of a warped deformation of the magnetic string geometry. The corresponding dual deformation of the magnetic string CFT potentially supplies, for the general case, the c_L=c_R=6J_L CFT predicted by Kerr/CFT.Comment: 18 pages, no figure

    The RN/CFT Correspondence Revisited

    Full text link
    We reconsidered the quantum gravity description of the near horizon extremal Reissner-Nordstr{\o}m black hole in the viewpoint of the AdS2_2/CFT1_1 correspondence. We found that, for pure electric case, the right moving central charge of dual 1D CFT is 6Q26 Q^2 which is different from the previous result 6Q36 Q^3 of left moving sector obtained by warped AdS3_3/CFT2_2 description. We discussed the discrepancy in these two approaches and examined novel properties of our result.Comment: revtex4, 16 pages, sign mistakes corrected, references include

    Hidden Conformal Symmetry of the Reissner-Nordstr{\o}m Black Holes

    Full text link
    Motivated by recent progresses in the holographic descriptions of the Kerr and Reissner-Nordstr{\o}m (RN) black holes, we explore the hidden conformal symmetry of nonextremal uplifted 5D RN black hole by studying the near horizon wave equation of a massless scalar field propagating in this background. Similar to the Kerr black hole case, this hidden symmetry is broken by the periodicity of the associated angle coordinate in the background geometry, but the results somehow testify the dual CFT description of the nonextremal RN black holes. The duality is further supported by matching of the entropies and absorption cross sections calculated from both CFT and gravity sides.Comment: 14 pages, no figur

    Kerr-CFT From Black-Hole Thermodynamics

    Full text link
    We analyze the near-horizon limit of a general black hole with two commuting killing vector fields in the limit of zero temperature. We use black hole thermodynamics methods to relate asymptotic charges of the complete spacetime to those obtained in the near-horizon limit. We then show that some diffeomorphisms do alter asymptotic charges of the full spacetime, even though they are defined in the near horizon limit and, therefore, count black hole states. We show that these conditions are essentially the same as considered in the Kerr/CFT corresponcence. From the algebra constructed from these diffeomorphisms, one can extract its central charge and then obtain the black hole entropy by use of Cardy's formula.Comment: 19 pages, JHEP3, no figures. V2: References added, small typos fixe

    Holographic Duals of Near-extremal Reissner-Nordstrom Black Holes

    Full text link
    We consider the AdS3/CFT2\mathrm{AdS}_3/\mathrm{CFT}_2 description of Reissner-Nordstr{\o}m black holes by studying their uplifted counterparts in five dimensions. Assuming a natural size of the extra dimension, the near horizon geometries for the extremal limit are exactly AdS3×S2\mathrm{AdS}_3 \times \mathrm{S}^2. We compute the scattering amplitude of a scalar field, with a mode near threshold of frequency and extra dimensional momentum, by a near extremal uplifted black hole. The absorption cross section agrees with the two point function of the CFT dual to the scalar field.Comment: reference added, improper statements corrected, 17 pages, no figure

    The Spectrum of Strings on Warped AdS_3 x S^3

    Full text link
    String theory on NS-NS AdS_3 x S^3 admits an exactly marginal deformation which breaks the SL(2,R)_R x SL(2,R)_L isometry of AdS_3 down to SL(2,R)_R x U(1)_L. The holographic dual is an exotic and only partially understood type of two-dimensional CFT with a reduced unbroken global conformal symmetry group. In this paper we study the deformed theory on the string worldsheet. It is found to be related by a spectral flow which is nonlocal in spacetime to the undeformed worldsheet theory. An exact formula for the spectrum of massive strings is presented.Comment: 26 pages, no figure

    On Holographic description of the Kerr-Newman-AdS-dS black holes

    Full text link
    In this paper, we study the holographic description of the generic four-dimensional non-extremal Kerr-Newman-AdS-dS black holes. We find that if focusing on the near-horizon region, for the massless scalar scattering in the low-frequency limit, there exists hidden conformal symmetry on the solution space. Similar to the Kerr case, this suggests that the Kerr-Newman-AdS-dS black hole is dual to a two-dimensional CFT with central charges cL=cR=6a(r++r)kc_L=c_R=\frac{6a(r_++r_\ast)}{k} and temperatures TL=k(r+2+r2+2a2)4πaΞ(r++r),TR=k(r+r)4πaΞT_L=\frac{k(r_+^2+r_\ast^2+2a^2)}{4\pi a\Xi(r_++r_\ast)}, T_R=\frac{k(r_+-r_\ast)}{4\pi a\Xi}. The macroscopic Bekenstein-Hawking entropy could be recovered from the microscopic counting in dual CFT via the Cardy formula. Using the Minkowski prescription, we compute the real-time correlators of the scalar, photon and graviton in near horizon geometry of near extremal Kerr-AdS-dS black hole. In all these cases, the retarded Green's function and the corresponding absorption cross section are in perfect match with CFT prediction. We further discuss the low-frequency scattering of a charged scalar by a Kerr-Newman-AdS-dS black hole and find the dual CFT description.Comment: 22 pages; minor corrections, conlusion unchanged, references added;published versio

    Holography at an Extremal De Sitter Horizon

    Full text link
    Rotating maximal black holes in four-dimensional de Sitter space, for which the outer event horizon coincides with the cosmological horizon, have an infinite near-horizon region described by the rotating Nariai metric. We show that the asymptotic symmetry group at the spacelike future boundary of the near-horizon region contains a Virasoro algebra with a real, positive central charge. This is evidence that quantum gravity in a rotating Nariai background is dual to a two-dimensional Euclidean conformal field theory. These results are related to the Kerr/CFT correspondence for extremal black holes, but have two key differences: one of the black hole event horizons has been traded for the cosmological horizon, and the near-horizon geometry is a fiber over dS_2 rather than AdS_2.Comment: 15 page

    Conformal weights in the Kerr/CFT correspondence

    Full text link
    It has been conjectured that a near-extreme Kerr black hole is described by a 2d CFT. Previous work has shown that CFT operators dual to axisymmetric gravitational perturbations have integer conformal weights. In this paper, we study the analogous problem in 5d. We consider the most general near-extreme vacuum black hole with two rotational symmetries. This includes Myers-Perry black holes, black rings and Kaluza-Klein black holes. We find that operators dual to gravitational (or electromagnetic or massless scalar field) perturbations preserving both rotational symmetries have integer conformal weights, the same for all black holes considered.Comment: 19 page

    Cardy and Kerr

    Get PDF
    The Kerr/CFT correspondence employs the Cardy formula to compute the entropy of the left moving CFT states. This computation, which correctly reproduces the Bekenstein--Hawking entropy of the four-dimensional extremal Kerr black hole, is performed in a regime where the temperature is of order unity rather than in a high-temperature regime. We show that the comparison of the entropy of the extreme Kerr black hole and the entropy in the CFT can be understood within the Cardy regime by considering a D0-D6 system with the same entropic properties.Comment: 20 pages; LaTeX; JHEP format; v.2 references added, v.3 Section 4 adde
    corecore