313 research outputs found

    The Impact of the Unstructured Contacts Component in Influenza Pandemic Modeling

    Get PDF
    Individual based models have become a valuable tool for modeling the spatiotemporal dynamics of epidemics, e.g. influenza pandemic, and for evaluating the effectiveness of intervention strategies. While specific contacts among individuals into diverse environments (family, school/workplace) can be modeled in a standard way by employing available socio-demographic data, all the other (unstructured) contacts can be dealt with by adopting very different approaches. This can be achieved for instance by employing distance-based models or by choosing unstructured contacts in the local communities or by employing commuting data.Here we show how diverse choices can lead to different model outputs and thus to a different evaluation of the effectiveness of the containment/mitigation strategies. Sensitivity analysis has been conducted for different values of the first generation index G(0), which is the average number of secondary infections generated by the first infectious individual in a completely susceptible population and by varying the seeding municipality. Among the different considered models, attack rate ranges from 19.1% to 25.7% for G(0) = 1.1, from 47.8% to 50.7% for G(0) = 1.4 and from 62.4% to 67.8% for G(0) = 1.7. Differences of about 15 to 20 days in the peak day have been observed. As regards spatial diffusion, a difference of about 100 days to cover 200 km for different values of G(0) has been observed.To reduce uncertainty in the models it is thus important to employ data, which start being available, on contacts on neglected but important activities (leisure time, sport mall, restaurants, etc.) and time-use data for improving the characterization of the unstructured contacts. Moreover, all the possible effects of different assumptions should be considered for taking public health decisions: not only sensitivity analysis to various model parameters should be performed, but intervention options should be based on the analysis and comparison of different modeling choices

    Modeling human mobility responses to the large-scale spreading of infectious diseases

    Get PDF
    Current modeling of infectious diseases allows for the study of realistic scenarios that include population heterogeneity, social structures, and mobility processes down to the individual level. The advances in the realism of epidemic description call for the explicit modeling of individual behavioral responses to the presence of disease within modeling frameworks. Here we formulate and analyze a metapopulation model that incorporates several scenarios of self-initiated behavioral changes into the mobility patterns of individuals. We find that prevalence-based travel limitations do not alter the epidemic invasion threshold. Strikingly, we observe in both synthetic and data-driven numerical simulations that when travelers decide to avoid locations with high levels of prevalence, this self-initiated behavioral change may enhance disease spreading. Our results point out that the real-time availability of information on the disease and the ensuing behavioral changes in the population may produce a negative impact on disease containment and mitigation

    Influence of Contact Definitions in Assessment of the Relative Importance of Social Settings in Disease Transmission Risk

    Get PDF
    BACKGROUND: Realistic models of disease transmission incorporating complex population heterogeneities require input from quantitative population mixing studies. We use contact diaries to assess the relative importance of social settings in respiratory pathogen spread using three measures of person contact hours (PCH) as proxies for transmission risk with an aim to inform bipartite network models of respiratory pathogen transmission. METHODS AND FINDINGS: Our survey examines the contact behaviour for a convenience sample of 65 adults, with each encounter classified as occurring in a work, retail, home, social, travel or "other" setting. The diary design allows for extraction of PCH-interaction (cumulative time in face-face conversational or touch interaction with contacts)--analogous to the contact measure used in several existing surveys--as well as PCH-setting (product of time spent in setting and number of people present) and PCH-reach (product of time spent in setting and number of people in close proximity). Heterogeneities in day-dependent distribution of risk across settings are analysed using partitioning and cluster analyses and compared between days and contact measures. Although home is typically the highest-risk setting when PCH measures isolate two-way interactions, its relative importance compared to social and work settings may reduce when adopting a more inclusive contact measure that considers the number and duration of potential exposure events. CONCLUSIONS: Heterogeneities in location-dependent contact behaviour as measured by contact diary studies depend on the adopted contact definition. We find that contact measures isolating face-face conversational or touch interactions suggest that contact in the home dominates, whereas more inclusive contact measures indicate that home and work settings may be of higher importance. In the absence of definitive knowledge of the contact required to facilitate transmission of various respiratory pathogens, it is important for surveys to consider alternative contact measures

    Effective, Robust Design of Community Mitigation for Pandemic Influenza: A Systematic Examination of Proposed US Guidance

    Get PDF
    BACKGROUND: The US government proposes pandemic influenza mitigation guidance that includes isolation and antiviral treatment of ill persons, voluntary household member quarantine and antiviral prophylaxis, social distancing of individuals, school closure, reduction of contacts at work, and prioritized vaccination. Is this the best strategy combination? Is choice of this strategy robust to pandemic uncertainties? What are critical enablers of community resilience? METHODS AND FINDINGS: We systematically simulate a broad range of pandemic scenarios and mitigation strategies using a networked, agent-based model of a community of explicit, multiply-overlapping social contact networks. We evaluate illness and societal burden for alterations in social networks, illness parameters, or intervention implementation. For a 1918-like pandemic, the best strategy minimizes illness to <1% of the population and combines network-based (e.g. school closure, social distancing of all with adults' contacts at work reduced), and case-based measures (e.g. antiviral treatment of the ill and prophylaxis of household members). We find choice of this best strategy robust to removal of enhanced transmission by the young, additional complexity in contact networks, and altered influenza natural history including extended viral shedding. Administration of age-group or randomly targeted 50% effective pre-pandemic vaccine with 7% population coverage (current US H5N1 vaccine stockpile) had minimal effect on outcomes. In order, mitigation success depends on rapid strategy implementation, high compliance, regional mitigation, and rigorous rescinding criteria; these are the critical enablers for community resilience. CONCLUSIONS: Systematic evaluation of feasible, recommended pandemic influenza interventions generally confirms the US community mitigation guidance yields best strategy choices for pandemic planning that are robust to a wide range of uncertainty. The best strategy combines network- and case-based interventions; network-based interventions are paramount. Because strategies must be applied rapidly, regionally, and stringently for greatest benefit, preparation and public education is required for long-lasting, high community compliance during a pandemic

    Vaccine herd effect

    Get PDF
    Vaccination ideally protects susceptible populations at high risk for complications of the infection. However, vaccines for these subgroups do not always provide sufficient effectiveness. The herd effect or herd immunity is an attractive way to extend vaccine benefits beyond the directly targeted population. It refers to the indirect protection of unvaccinated persons, whereby an increase in the prevalence of immunity by the vaccine prevents circulation of infectious agents in susceptible populations. The herd effect has had a major impact in the eradication of smallpox, has reduced transmission of pertussis, and protects against influenza and pneumococcal disease. A high uptake of vaccines is generally needed for success. In this paper we aim to provide an update review on the herd effect, focusing on the clinical benefit, by reviewing data for specific vaccines

    Causal inference based on counterfactuals

    Get PDF
    BACKGROUND: The counterfactual or potential outcome model has become increasingly standard for causal inference in epidemiological and medical studies. DISCUSSION: This paper provides an overview on the counterfactual and related approaches. A variety of conceptual as well as practical issues when estimating causal effects are reviewed. These include causal interactions, imperfect experiments, adjustment for confounding, time-varying exposures, competing risks and the probability of causation. It is argued that the counterfactual model of causal effects captures the main aspects of causality in health sciences and relates to many statistical procedures. SUMMARY: Counterfactuals are the basis of causal inference in medicine and epidemiology. Nevertheless, the estimation of counterfactual differences pose several difficulties, primarily in observational studies. These problems, however, reflect fundamental barriers only when learning from observations, and this does not invalidate the counterfactual concept

    Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1)

    Get PDF
    Here we present a review of the literature of influenza modeling studies, and discuss how these models can provide insights into the future of the currently circulating novel strain of influenza A (H1N1), formerly known as swine flu. We discuss how the feasibility of controlling an epidemic critically depends on the value of the Basic Reproduction Number (R0). The R0 for novel influenza A (H1N1) has recently been estimated to be between 1.4 and 1.6. This value is below values of R0 estimated for the 1918–1919 pandemic strain (mean R0~2: range 1.4 to 2.8) and is comparable to R0 values estimated for seasonal strains of influenza (mean R0 1.3: range 0.9 to 2.1). By reviewing results from previous modeling studies we conclude it is theoretically possible that a pandemic of H1N1 could be contained. However it may not be feasible, even in resource-rich countries, to achieve the necessary levels of vaccination and treatment for control. As a recent modeling study has shown, a global cooperative strategy will be essential in order to control a pandemic. This strategy will require resource-rich countries to share their vaccines and antivirals with resource-constrained and resource-poor countries. We conclude our review by discussing the necessity of developing new biologically complex models. We suggest that these models should simultaneously track the transmission dynamics of multiple strains of influenza in bird, pig and human populations. Such models could be critical for identifying effective new interventions, and informing pandemic preparedness planning. Finally, we show that by modeling cross-species transmission it may be possible to predict the emergence of pandemic strains of influenza

    Impact of Emerging Antiviral Drug Resistance on Influenza Containment and Spread: Influence of Subclinical Infection and Strategic Use of a Stockpile Containing One or Two Drugs

    Get PDF
    BACKGROUND: Wide-scale use of antiviral agents in the event of an influenza pandemic is likely to promote the emergence of drug resistance, with potentially deleterious effects for outbreak control. We explored factors promoting resistance within a dynamic infection model, and considered ways in which one or two drugs might be distributed to delay the spread of resistant strains or mitigate their impact. METHODS AND FINDINGS: We have previously developed a novel deterministic model of influenza transmission that simulates treatment and targeted contact prophylaxis, using a limited stockpile of antiviral agents. This model was extended to incorporate subclinical infections, and the emergence of resistant virus strains under the selective pressure imposed by various uses of one or two antiviral agents. For a fixed clinical attack rate, R(0) rises with the proportion of subclinical infections thus reducing the number of infections amenable to treatment or prophylaxis. In consequence, outbreak control is more difficult, but emergence of drug resistance is relatively uncommon. Where an epidemic may be constrained by use of a single antiviral agent, strategies that combine treatment and prophylaxis are most effective at controlling transmission, at the cost of facilitating the spread of resistant viruses. If two drugs are available, using one drug for treatment and the other for prophylaxis is more effective at preventing propagation of mutant strains than either random allocation or drug cycling strategies. Our model is relatively straightforward, and of necessity makes a number of simplifying assumptions. Our results are, however, consistent with the wider body of work in this area and are able to place related research in context while extending the analysis of resistance emergence and optimal drug use within the constraints of a finite drug stockpile. CONCLUSIONS: Combined treatment and prophylaxis represents optimal use of antiviral agents to control transmission, at the cost of drug resistance. Where two drugs are available, allocating different drugs to cases and contacts is likely to be most effective at constraining resistance emergence in a pandemic scenario

    Comparison of three methods for ascertainment of contact information relevant to respiratory pathogen transmission in encounter networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mathematical models of infection that consider targeted interventions are exquisitely dependent on the assumed mixing patterns of the population. We report on a pilot study designed to assess three different methods (one retrospective, two prospective) for obtaining contact data relevant to the determination of these mixing patterns.</p> <p>Methods</p> <p>65 adults were asked to record their social encounters in each location visited during 6 study days using a novel method whereby a change in physical location of the study participant triggered data entry. Using a cross-over design, all participants recorded encounters on 3 days in a paper diary and 3 days using an electronic recording device (PDA). Participants were randomised to first prospective recording method.</p> <p>Results</p> <p>Both methods captured more contacts than a pre-study questionnaire, but ascertainment using the paper diary was superior to the PDA (mean difference: 4.52 (95% CI 0.28, 8.77). Paper diaries were found more acceptable to the participants compared with the PDA. Statistical analysis confirms that our results are broadly consistent with those reported from large-scale European based surveys. An association between household size (trend 0.14, 95% CI (0.06, 0.22), <it>P </it>< 0.001) and composition (presence of child 0.37, 95% CI (0.17, 0.56), <it>P </it>< 0.001) and the total number of reported contacts was observed, highlighting the importance of sampling study populations based on household characteristics as well as age. New contacts were still being recorded on the third study day, but compliance had declined, indicating that the optimal number of sample days represents a trade-off between completeness and quality of data for an individual.</p> <p>Conclusions</p> <p>The study's location-based reporting design allows greater scope compared to other methods for examining differences in the characteristics of encounters over a range of environments. Improved parameterisation of dynamic transmission models gained from work of this type will aid in the development of more robust decision support tools to assist health policy makers and planners.</p

    Risk Factors of Household Transmission of Pandemic (H1N1) 2009 among Patients Treated with Antivirals: A Prospective Study at a Primary Clinic in Japan

    Get PDF
    Background: Household transmission of influenza can affect the daily lives of patients and their families and be a trigger for community transmission, thus it is necessary to take precautions to prevent household transmission. We aimed to determine the risks of household transmission of pandemic (H1N1) 2009 influenza virus from an index patient who visited a primary clinic and was treated with antiviral drugs. Methods: We followed up all the patients who were diagnosed with influenza A by rapid diagnostic test with a questionnaire or interview from July 2009 to April 2010. Secondary cases were defined as patients visiting the clinic or other clinics and being positive for influenza A by rapid diagnostic test within 7 days of onset of an index patient. Logistic regression analysis was used to explore the association between household transmission and the studied variables. Results: We recruited 591 index patients and 1629 household contacts. The crude secondary attack rate was 7.3 % [95% confidence interval (CI): 6.1–8.7]. Age of index patients (0–6 years old: odds ratio 2.56; 95 % CI: 1.31–4.01; 7–12 years old: 2.44, 1.31–3.72; 30–39 years old 3.88; 2.09–5.21; 40 years old or more 2.76; 1.17–4.53) and number of household members with five or more (3.09, 2.11–4.07), medication started 48 hours from the onset of fever (2.38, 1.17–3.87) were significantly associated with household transmission. Conclusions: Household transmission was associated with index patients aged #12 years old and adults 30 years wit
    corecore