55 research outputs found

    Eco-bio-social determinants for house infestation by non-domiciliated Triatoma dimidiata in the Yucatan peninsula, Mexico

    Get PDF
    Background Chagas disease is a vector-borne disease of major importance in the Americas. Disease prevention is mostly limited to vector control. Integrated interventions targeting ecological, biological and social determinants of vector-borne diseases are increasingly used for improved control. Methodology/principal findings We investigated key factors associated with transient house infestation by T. dimidiata in rural villages in Yucatan, Mexico, using a mixed modeling approach based on initial null-hypothesis testing followed by multimodel inference and averaging on data from 308 houses from three villages. We found that the presence of dogs, chickens and potential refuges, such as rock piles, in the peridomicile as well as the proximity of houses to vegetation at the periphery of the village and to public light sources are major risk factors for infestation. These factors explain most of the intra-village variations in infestation. Conclusions/significance These results underline a process of infestation distinct from that of domiciliated triatomines and may be used for risk stratification of houses for both vector surveillance and control. Combined integrated vector interventions, informed by an Ecohealth perspective, should aim at targeting several of these factors to effectively reduce infestation and provide sustainable vector control

    Spatial Re-Establishment Dynamics of Local Populations of Vectors of Chagas Disease

    Get PDF
    Chagas disease is transmitted by blood-sucking bugs (vectors) and presents a severe public health threat in the Americas. Worldwide there are approximately 10 million people infected with Chagas disease, a disease for which there is currently no effective cure. Vector suppression is the main strategy to control the spread of this disease. Unfortunately, the vectors have been resurgent in some areas. It is important to understand the dynamics of reinfestation where it occurs. Here we show how different models fitted to patch-level bug infestation data can elucidate different aspects of re-establishment dynamics. Our results demonstrated a 6-month time lag between detection of a new infestation and dispersal events, seasonality in dispersal rates and effects of previous vector infestation on subsequent vector establishment rates. In addition we provide estimates of dispersal distances and the effect of insecticide spraying on rates of vector re-establishment. While some of our results confirm previous findings, the effects of season and previous infestation on bug establishment challenge our current understanding of T. infestans ecology and highlight important gaps in our knowledge of T. infestans dispersal

    Characterization of the Dispersal of Non-Domiciliated Triatoma dimidiata through the Selection of Spatially Explicit Models

    Get PDF
    Chagas disease is one of the most important neglected diseases in Latin America. Although insecticides have been successfully sprayed to control domiciliated vector populations, this strategy has proven to be ineffective in areas where non-domiciliated vectors immigrating from peridomestic or sylvatic ecotopes can (re-)infest houses. The development of strategies for the control of non-domiciliated vectors has thus been identified by the World Health Organization as a major challenge. Such development primarily requires a description of the spatio-temporal dynamics of infestation by these vectors, and a good understanding of their dispersal. We combined for the first time extensive spatio-temporal data sets describing house infestation dynamics by Triatoma dimidiata inside one village, and spatially explicit population dynamics models. The models fitted and predicted remarkably the observed infestation dynamics. They thus provided both key insights into the dispersal of T. dimidiata in this area, and a suitable mathematical background to evaluate the efficacy of various control strategies. Interestingly, the observed and modelled patterns of infestation suggest that interventions could focus on the periphery of the village, where there is the highest risk of transmission. Such spatial optimization may allow for reducing the cost of control, compensating for repeated interventions necessary for non-domiciliated vectors

    Hidden Sylvatic Foci of the Main Vector of Chagas Disease Triatoma infestans: Threats to the Vector Elimination Campaign?

    Get PDF
    Triatoma infestans, a highly domesticated species and historically the main vector of Trypanosoma cruzi, is the target of an insecticide-based elimination program in the southern cone countries of South America since 1991. Only limited success has been achieved in the Gran Chaco region due to repeated reinfestations. We conducted full-coverage spraying of pyrethroid insecticides of all houses in a well-defined rural area in northwestern Argentina, followed by intense monitoring of house reinfestation and searches for triatomine bugs in sylvatic habitats during the next two years, to establish the putative sources of new bug colonies. We found low-density sylvatic foci of T. infestans in trees located within the species' flight range from the nearest infested house detected before control interventions. Using multiple methods (fine-resolution satellite imagery, geographic information systems, spatial statistics, genetic markers and wing geometric morphometry), we corroborated the species identity of the sylvatic bugs as T. infestans and found they were indistinguishable from or closely related to local domestic or peridomestic bug populations. Two sylvatic foci were spatially associated to the nearest peridomestic bug populations found before interventions. Sylvatic habitats harbor hidden foci of T. infestans that may represent a threat to vector suppression attempts
    • …
    corecore