6,285 research outputs found

    Paracrine roles of cellular senescence in promoting tumourigenesis

    Get PDF
    Senescent cells activate genetic programmes that irreversibly inhibit cellular proliferation, but also endow these cells with distinctive metabolic and signalling phenotypes. Although senescence has historically been considered a protective mechanism against tumourigenesis, the activities of senescent cells are increasingly being associated with age-related diseases, including cancer. An important feature of senescent cells is the secretion of a vast array of pro-inflammatory cytokines, chemokines, and growth factors collectively known as the senescence-associated secretory phenotype (SASP). Recent research has shown that SASP paracrine signalling can mediate several pro-tumourigenic effects, such as enhancing malignant phenotypes and promoting tumour initiation. In this review, we summarise the paracrine activities of senescent cells and their role in tumourigenesis through direct effects on growth and proliferation of tumour cells, tumour angiogenesis, invasion and metastasis, cellular reprogramming and emergence of tumour-initiating cells, and tumour interactions with the local immune environment. The evidence described here suggests cellular senescence acts as a double-edged sword in cancer pathogenesis, which demands further attention in order to support the use of senolytic or SASP-modulating compounds for cancer treatment

    CNVassoc: Association analysis of CNV data using R

    Get PDF
    Background: Copy number variants (CNV) are a potentially important component of the genetic contribution to risk of common complex diseases. Analysis of the association between CNVs and disease requires that uncertainty in CNV copy-number calls, which can be substantial, be taken into account; failure to consider this uncertainty can lead to biased results. Therefore, there is a need to develop and use appropriate statistical tools. To address this issue, we have developed CNVassoc, an R package for carrying out association analysis of common copy number variants in population-based studies. This package includes functions for testing for association with different classes of response variables (e.g. class status, censored data, counts) under a series of study designs (case-control, cohort, etc) and inheritance models, adjusting for covariates. The package includes functions for inferring copy number (CNV genotype calling), but can also accept copy number data generated by other algorithms (e.g. CANARY, CGHcall, IMPUTE). Results: Here we present a new R package, CNVassoc, that can deal with different types of CNV arising from different platforms such as MLPA o aCGH. Through a real data example we illustrate that our method is able to incorporate uncertainty in the association process. We also show how our package can also be useful when analyzing imputed data when analyzing imputed SNPs. Through a simulation study we show that CNVassoc outperforms CNVtools in terms of computing time as well as in convergence failure rate. Conclusions: We provide a package that outperforms the existing ones in terms of modelling flexibility, power, convergence rate, ease of covariate adjustment, and requirements for sample size and signal quality. Therefore, we offer CNVassoc as a method for routine use in CNV association studiesThis work has been supported by the Spanish Ministry of Science and Innovation (MTM2008-02457 to JRG, BIO2009-12458 to RD-U and statistical genetics network MTM2010-09526-E (subprograma MTM) to JRG, IS, GL and RD-U). GL is supported by the Juan de la Cierva Program of the Spanish Ministry of Science and Innovation

    Corvid Re-Caching without ‘Theory of Mind’: A Model

    Get PDF
    Scrub jays are thought to use many tactics to protect their caches. For instance, they predominantly bury food far away from conspecifics, and if they must cache while being watched, they often re-cache their worms later, once they are in private. Two explanations have been offered for such observations, and they are intensely debated. First, the birds may reason about their competitors' mental states, with a ‘theory of mind’; alternatively, they may apply behavioral rules learned in daily life. Although this second hypothesis is cognitively simpler, it does seem to require a different, ad-hoc behavioral rule for every caching and re-caching pattern exhibited by the birds. Our new theory avoids this drawback by explaining a large variety of patterns as side-effects of stress and the resulting memory errors. Inspired by experimental data, we assume that re-caching is not motivated by a deliberate effort to safeguard specific caches from theft, but by a general desire to cache more. This desire is brought on by stress, which is determined by the presence and dominance of onlookers, and by unsuccessful recovery attempts. We study this theory in two experiments similar to those done with real birds with a kind of ‘virtual bird’, whose behavior depends on a set of basic assumptions about corvid cognition, and a well-established model of human memory. Our results show that the ‘virtual bird’ acts as the real birds did; its re-caching reflects whether it has been watched, how dominant its onlooker was, and how close to that onlooker it has cached. This happens even though it cannot attribute mental states, and it has only a single behavioral rule assumed to be previously learned. Thus, our simulations indicate that corvid re-caching can be explained without sophisticated social cognition. Given our specific predictions, our theory can easily be tested empirically

    Redox-dependent and redox-independent functions of Caenorhabditis elegans thioredoxin 1

    Get PDF
    Thioredoxins (TRX) are traditionally considered as enzymes catalyzing redox reactions. However, redox-independent functions of thioredoxins have been described in different organisms, although the underlying molecular mechanisms are yet unknown. We report here the characterization of the first generated endogenous redox-inactive thioredoxin in an animal model, the TRX-1 in the nematode Caenorhabditis elegans. We find that TRX-1 dually regulates the formation of an endurance larval stage (dauer) by interacting with the insulin pathway in a redox-independent manner and the cGMP pathway in a redox-dependent manner. Moreover, the requirement of TRX-1 for the extended longevity of worms with compromised insulin signalling or under calorie restriction relies on TRX-1 redox activity. In contrast, the nuclear translocation of the SKN-1 transcription factor and increased LIPS-6 protein levels in the intestine upon trx-1 deficiency are strictly redox-independent. Finally, we identify a novel function of C. elegans TRX-1 in male food-leaving behaviour that is redox-dependent. Taken together, our results position C. elegans as an ideal model to gain mechanistic insight into the redox-independent functions of metazoan thioredoxins, overcoming the limitations imposed by the embryonic lethal phenotypes of thioredoxin mutants in higher organisms

    Non-resonant leptogenesis in seesaw models with an almost conserved B-L

    Full text link
    We review the motivations and some results on leptogenesis in seesaw models with an almost conserved lepton number. The paper is based on a talk given at the 5th International Symposium on Symmetries in Subatomic Physics, SSP2012.Comment: 8 pages, 1 figure. Published in the proceedings of the 5th International Symposium on Symmetries in Subatomic Physics, SSP201

    Recommendation of an integrated index for the quality of educational services using multivariate statistics

    Get PDF
    In this work, the analysis of the surveys was carried out through a factorial analysis, which facilitates the evaluation of the validity of the selected construct for the case under study, as well as evaluating the quality of the service for each factor, with a view to determining the level of quality of the educational service, for which it integrates elements of descriptive and multivariate statistics with the management of the quality of the educational service. They are used as fundamental statistical techniques, descriptive analysis, factor analysis and analysis of variance. As a final result, it was concluded that the students of five UNITEC careers evaluated the educational service they receive as very satisfactory (4 points), highlighting the tangible elements as the most weighted factor. A significant aspect is that there are no significant differences in the perceptions of students from different careers and different sections

    Phase transitions in biological membranes

    Full text link
    Native membranes of biological cells display melting transitions of their lipids at a temperature of 10-20 degrees below body temperature. Such transitions can be observed in various bacterial cells, in nerves, in cancer cells, but also in lung surfactant. It seems as if the presence of transitions slightly below physiological temperature is a generic property of most cells. They are important because they influence many physical properties of the membranes. At the transition temperature, membranes display a larger permeability that is accompanied by ion-channel-like phenomena even in the complete absence of proteins. Membranes are softer, which implies that phenomena such as endocytosis and exocytosis are facilitated. Mechanical signal propagation phenomena related to nerve pulses are strongly enhanced. The position of transitions can be affected by changes in temperature, pressure, pH and salt concentration or by the presence of anesthetics. Thus, even at physiological temperature, these transitions are of relevance. There position and thereby the physical properties of the membrane can be controlled by changes in the intensive thermodynamic variables. Here, we review some of the experimental findings and the thermodynamics that describes the control of the membrane function.Comment: 23 pages, 15 figure

    Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae

    Get PDF
    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.Jennifer R. Bellon, Frank Schmid, Dimitra L. Capone, Barbara L. Dunn, Paul J. Chamber
    • …
    corecore