197 research outputs found

    Genetic association of zinc transporter 8 (ZnT8) autoantibodies in type 1 diabetes cases

    Get PDF
    Autoantibodies to zinc transporter 8 (ZnT8A) are associated with risk of type 1 diabetes. Apart from the SLC30A8 gene itself, little is known about the genetic basis of ZnT8A. We hypothesise that other loci in addition to SLC30A8 are associated with ZnT8A. The levels of ZnT8A were measured in 2,239 British type 1 diabetic individuals diagnosed before age 17 years, with a median duration of diabetes of 4 years. Cases were tested at over 775,000 loci genome wide (including 53 type 1 diabetes associated regions) for association with positivity for ZnT8A. ZnT8A were also measured in an independent dataset of 855 family members with type 1 diabetes. Only FCRL3 on chromosome 1q23.1 and the HLA class I region were associated with positivity for ZnT8A. rs7522061T > C was the most associated single nucleotide polymorphism (SNP) in the FCRL3 region (p = 1.13 x 10(-16)). The association was confirmed in the family dataset (p a parts per thousand currency signaEuro parts per thousand 9.20 x 10(-4)). rs9258750A > G was the most associated variant in the HLA region (p = 2.06 x 10(-9) and p = 0.0014 in family cases). The presence of ZnT8A was not associated with HLA-DRB1, HLA-DQB1, HLA-A, HLA-B or HLA-C (p > 0.05). Unexpectedly, the two loci associated with the presence of ZnT8A did not alter risk of having type 1 diabetes, and the 53 type 1 diabetes risk loci did not influence positivity for ZnT8A, despite them being disease specific. ZnT8A are not primary pathogenic factors in type 1 diabetes. Nevertheless, ZnT8A testing in combination with other autoantibodies facilitates disease prediction, despite the biomarker not being under the same genetic control as the disease

    Molecular Recognition of H3/H4 Histone Tails by the Tudor Domains of JMJD2A: A Comparative Molecular Dynamics Simulations Study

    Get PDF
    Background: Histone demethylase, JMJD2A, specifically recognizes and binds to methylated lysine residues at histone H3 and H4 tails (especially trimethylated H3K4 (H3K4me3), trimethylated H3K9 (H3K9me3) and di, trimethylated H4K20 (H4K20me2, H4K20me3)) via its tandem tudor domains. Crystal structures of JMJD2A-tudor binding to H3K4me3 and H4K20me3 peptides are available whereas the others are not. Complete picture of the recognition of the four histone peptides by the tandem tudor domains yet remains to be clarified. Methodology/Principal Findings: We report a detailed molecular dynamics simulation and binding energy analysis of the recognition of JMJD2A-tudor with four different histone tails. 25 ns fully unrestrained molecular dynamics simulations are carried out for each of the bound and free structures. We investigate the important hydrogen bonds and electrostatic interactions between the tudor domains and the peptide molecules and identify the critical residues that stabilize the complexes. Our binding free energy calculations show that H4K20me2 and H3K9me3 peptides have the highest and lowest affinity to JMJD2A-tudor, respectively. We also show that H4K20me2 peptide adopts the same binding mode with H4K20me3 peptide, and H3K9me3 peptide adopts the same binding mode with H3K4me3 peptide. Decomposition of the enthalpic and the entropic contributions to the binding free energies indicate that the recognition of the histone peptides is mainly driven by favourable van der Waals interactions. Residue decomposition of the binding free energies with backbone and side chain contributions as well as their energetic constituents identify the hotspots in the binding interface of the structures. Conclusion: Energetic investigations of the four complexes suggest that many of the residues involved in the interactions are common. However, we found two receptor residues that were related to selective binding of the H3 and H4 ligands. Modifications or mutations on one of these residues can selectively alter the recognition of the H3 tails or the H4 tails

    The association between retraction of the torn rotator cuff and increasing expression of hypoxia inducible factor 1α and vascular endothelial growth factor expression: an immunohistological study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Differing levels of tendon retraction are found in full-thickness rotator cuff tears. The pathophysiology of tendon degeneration and retraction is unclear. Neoangiogenesis in tendon parenchyma indicates degeneration. Hypoxia inducible factor 1α (HIF) and vascular endothelial growth factor (VEGF) are important inducers of neoangiogenesis. Rotator cuff tendons rupture leads to fatty muscle infiltration (FI) and muscle atrophy (MA). The aim of this study is to clarify the relationship between HIF and VEGF expression, neoangiogenesis, FI, and MA in tendon retraction found in full-thickness rotator cuff tears.</p> <p>Methods</p> <p>Rotator cuff tendon samples of 33 patients with full-thickness medium-sized rotator cuff tears were harvested during reconstructive surgery. The samples were dehydrated and paraffin embedded. For immunohistological determination of VEGF and HIF expression, sample slices were strained with VEGF and HIF antibody dilution. Vessel density and vessel size were determined after Masson-Goldner staining of sample slices. The extent of tendon retraction was determined intraoperatively according to Patte's classification. Patients were assigned to 4 categories based upon Patte tendon retraction grade, including one control group. FI and MA were measured on standardized preoperative shoulder MRI.</p> <p>Results</p> <p>HIF and VEGF expression, FI, and MA were significantly higher in torn cuff samples compared with healthy tissue (p < 0.05). HIF and VEGF expression, and vessel density significantly increased with extent of tendon retraction (p < 0.05). A correlation between HIF/VEGF expression and FI and MA could be found (p < 0.05). There was no significant correlation between HIF/VEGF expression and neovascularity (p > 0.05)</p> <p>Conclusion</p> <p>Tendon retraction in full-thickness medium-sized rotator cuff tears is characterized by neovascularity, increased VEGF/HIF expression, FI, and MA. VEGF expression and neovascularity may be effective monitoring tools to assess tendon degeneration.</p

    Association of COMT genotypes with S-COMT promoter methylation in growth-discordant monozygotic twins and healthy adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Catechol-O-Methyltransferase (COMT) plays a key role in dopamine and estrogen metabolism. Recently, COMT haplotypes rather than the single polymorphism Val158Met have been reported to underlie differences in protein expression by modulating mRNA secondary structure. So far, studies investigating the epigenetic variability of the S-COMT (soluble COMT) promoter region mainly focused on phenotypical aspects, and results have been controversial.</p> <p>Methods</p> <p>We assessed S-COMT promoter methylation in saliva and blood derived DNA with regard to early pre- and postnatal growth as well as to genotype for polymorphisms rs6269, rs4633, and rs4680 (Val158Met) in 20 monozygotic twin pairs (mean age 4 years), who were discordant for intrauterine development due to severe feto-fetal-transfusion syndrome. Methylation levels of two previously reported partially methylated cytosines were determined by the quantitative SIRPH (SNuPE- IP RP HPLC) assay.</p> <p>Results</p> <p>Overall, we observed a high variability of S-COMT promoter methylation, which did not correlate with individual differences in the pre- or postnatal growth pattern. Within the twin pairs however we noted a distinct similarity that could be linked to underlying COMT genotypes. This association was subsequently confirmed in a cohort of 93 unrelated adult controls. Interestingly, 158Val-alleles were found at both ends of the epigenotypical range, which is in accordance with a recently proposed model of COMT haplotypes corresponding to a continuum of phenotypical variability.</p> <p>Conclusion</p> <p>The strong heritable component of S-COMT promoter methylation found in our study needs to be considered in future approaches that focus on interactions between COMT epigenotype and phenotype.</p

    Preferential regulation of miRNA targets by environmental chemicals in the human genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>microRNAs (miRNAs) represent a class of small (typically 22 nucleotides in length) non-coding RNAs that can degrade their target mRNAs or block their translation. Recent disease research showed the exposure to some environmental chemicals (ECs) can regulate the expression patterns of miRNAs, which raises the intriguing question of how miRNAs and their targets cope with the exposure to ECs throughout the genome.</p> <p>Results</p> <p>In this study, we comprehensively analyzed the properties of genes regulated by ECs (EC-genes) and found miRNA targets were significantly enriched among the EC-genes. Compared with the non-miRNA-targets, miRNA targets were roughly twice as likely to be EC-genes. By investigating the collection methods and other properties of the EC-genes, we demonstrated that the enrichment of miRNA targets was not attributed to either the potential collection bias of EC-genes, the presence of paralogs, longer 3'UTRs or more conserved 3'UTRs. Finally, we identified 1,842 significant concurrent interactions between 407 miRNAs and 497 ECs. This association network of miRNAs-ECs was highly modular and could be separated into 14 interconnected modules. In each module, miRNAs and ECs were closely connected, providing a good method to design accurate miRNA markers for ECs in toxicology research.</p> <p>Conclusions</p> <p>Our analyses indicated that miRNAs and their targets played important roles in cellular responses to ECs. Association analyses of miRNAs and ECs will help to broaden the understanding of the pathogenesis of such chemical components.</p

    Molecular Dynamics Simulation of the Complex PBP-2x with Drug Cefuroxime to Explore the Drug Resistance Mechanism of Streptococcus suis R61

    Get PDF
    Drug resistance of Streptococcus suis strains is a worldwide problem for both humans and pigs. Previous studies have noted that penicillin-binding protein (PBPs) mutation is one important cause of β-lactam antibiotic resistance. In this study, we used the molecular dynamics (MD) method to study the interaction differences between cefuroxime (CES) and PBP2x within two newly sequenced Streptococcus suis: drug-sensitive strain A7, and drug-resistant strain R61. The MM-PBSA results proved that the drug bound much more tightly to PBP2x in A7 (PBP2x-A7) than to PBP2x in R61 (PBP2x-R61). This is consistent with the evidently different resistances of the two strains to cefuroxime. Hydrogen bond analysis indicated that PBP2x-A7 preferred to bind to cefuroxime rather than to PBP2x-R61. Three stable hydrogen bonds were formed by the drug and PBP2x-A7, while only one unstable bond existed between the drug and PBP2x-R61. Further, we found that the Gln569, Tyr594, and Gly596 residues were the key mutant residues contributing directly to the different binding by pair wise energy decomposition comparison. By investigating the binding mode of the drug, we found that mutant residues Ala320, Gln553, and Thr595 indirectly affected the final phenomenon by topological conformation alteration. Above all, our results revealed some details about the specific interaction between the two PBP2x proteins and the drug cefuroxime. To some degree, this explained the drug resistance mechanism of Streptococcus suis and as a result could be helpful for further drug design or improvement

    Protocol of the baseline assessment for the Environments for Healthy Living (EHL) Wales cohort study

    Get PDF
    Background Health is a result of influences operating at multiple levels. For example, inadequate housing, poor educational attainment, and reduced access to health care are clustered together, and are all associated with reduced health. Policies which try to change individual people's behaviour have limited effect when people have little control over their environment. However, structural environmental change and an understanding of the way that influences interact with each other, has the potential to facilitate healthy choices irrespective of personal resources. The aim of Environments for Healthy Living (EHL) is to investigate the impact of gestational and postnatal environments on health, and to examine where structural change can be brought about to optimise health outcomes. The baseline assessment will focus on birth outcomes and maternal and infant health. Methods/Design EHL is a longitudinal birth cohort study. We aim to recruit 1000 pregnant women in the period April 2010 to March 2013. We will examine the impact of the gestational environment (maternal health) and the postnatal environment (housing and neighbourhood conditions) on subsequent health outcomes for the infants born to these women. Data collection will commence during the participants' pregnancy, from approximately 20 weeks gestation. Participants will complete a questionnaire, undergo anthropometric measurements, wear an accelerometer, compile a food diary, and have environmental measures taken within their home. They will also be asked to consent to having a sample of umbilical cord blood taken following delivery of their baby. These data will be complemented by routinely collected electronic data such as health records from GP surgeries, hospital admissions, and child health and development records. Thereafter, participants will be visited annually for follow-up of subsequent exposures and child health outcomes. Discussion The baseline assessment of EHL will provide information concerning the impact of gestational and postnatal environments on birth outcomes and maternal and infant health. The findings can be used to inform the development of complex interventions targeted at structural, environmental factors, intended to reduce ill-health. Long-term follow-up of the cohort will focus on relationships between environmental exposures and the later development of adverse health outcomes, including obesity and diabetes

    The Level of the Transcription Factor Pax6 Is Essential for Controlling the Balance between Neural Stem Cell Self-Renewal and Neurogenesis

    Get PDF
    Neural stem cell self-renewal, neurogenesis, and cell fate determination are processes that control the generation of specific classes of neurons at the correct place and time. The transcription factor Pax6 is essential for neural stem cell proliferation, multipotency, and neurogenesis in many regions of the central nervous system, including the cerebral cortex. We used Pax6 as an entry point to define the cellular networks controlling neural stem cell self-renewal and neurogenesis in stem cells of the developing mouse cerebral cortex. We identified the genomic binding locations of Pax6 in neocortical stem cells during normal development and ascertained the functional significance of genes that we found to be regulated by Pax6, finding that Pax6 positively and directly regulates cohorts of genes that promote neural stem cell self-renewal, basal progenitor cell genesis, and neurogenesis. Notably, we defined a core network regulating neocortical stem cell decision-making in which Pax6 interacts with three other regulators of neurogenesis, Neurog2, Ascl1, and Hes1. Analyses of the biological function of Pax6 in neural stem cells through phenotypic analyses of Pax6 gain- and loss-of-function mutant cortices demonstrated that the Pax6-regulated networks operating in neural stem cells are highly dosage sensitive. Increasing Pax6 levels drives the system towards neurogenesis and basal progenitor cell genesis by increasing expression of a cohort of basal progenitor cell determinants, including the key transcription factor Eomes/Tbr2, and thus towards neurogenesis at the expense of self-renewal. Removing Pax6 reduces cortical stem cell self-renewal by decreasing expression of key cell cycle regulators, resulting in excess early neurogenesis. We find that the relative levels of Pax6, Hes1, and Neurog2 are key determinants of a dynamic network that controls whether neural stem cells self-renew, generate cortical neurons, or generate basal progenitor cells, a mechanism that has marked parallels with the transcriptional control of embryonic stem cell self-renewal
    corecore