27 research outputs found

    N-player quantum games in an EPR setting

    Get PDF
    The NN-player quantum game is analyzed in the context of an Einstein-Podolsky-Rosen (EPR) experiment. In this setting, a player's strategies are not unitary transformations as in alternate quantum game-theoretic frameworks, but a classical choice between two directions along which spin or polarization measurements are made. The players' strategies thus remain identical to their strategies in the mixed-strategy version of the classical game. In the EPR setting the quantum game reduces itself to the corresponding classical game when the shared quantum state reaches zero entanglement. We find the relations for the probability distribution for NN-qubit GHZ and W-type states, subject to general measurement directions, from which the expressions for the mixed Nash equilibrium and the payoffs are determined. Players' payoffs are then defined with linear functions so that common two-player games can be easily extended to the NN-player case and permit analytic expressions for the Nash equilibrium. As a specific example, we solve the Prisoners' Dilemma game for general N2 N \ge 2 . We find a new property for the game that for an even number of players the payoffs at the Nash equilibrium are equal, whereas for an odd number of players the cooperating players receive higher payoffs.Comment: 26 pages, 2 figure

    Anomalous Features of EMT during Keratinocyte Transformation

    Get PDF
    During the evolution of epithelial cancers, cells often lose their characteristic features and acquire a mesenchymal phenotype, in a process known as epithelial-mesenchymal transition (EMT). In the present study we followed early stages of keratinocyte transformation by HPV16, and observed diverse cellular changes, associated with EMT. We compared primary keratinocytes with early and late passages of HF1 cells, a cell line of HPV16-transformed keratinocytes. We have previously shown that during the progression from the normal cells to early HF1 cells, immortalization is acquired, while in the progression to late HF1, cells become anchorage independent. We show here that during the transition from the normal state to late HF1 cells, there is a progressive reduction in cytokeratin expression, desmosome formation, adherens junctions and focal adhesions, ultimately leading to poorly adhesive phenotype, which is associated with anchorage-independence. Surprisingly, unlike “conventional EMT”, these changes are associated with reduced Rac1-dependent cell migration. We monitored reduced Rac1-dependent migration also in the cervical cancer cell line SiHa. Therefore we can conclude that up to the stage of tumor formation migratory activity is eliminated

    The changing form of Antarctic biodiversity

    Get PDF
    Antarctic biodiversity is much more extensive, ecologically diverse and biogeographically structured than previously thought. Understanding of how this diversity is distributed in marine and terrestrial systems, the mechanisms underlying its spatial variation, and the significance of the microbiota is growing rapidly. Broadly recognizable drivers of diversity variation include energy availability and historical refugia. The impacts of local human activities and global environmental change nonetheless pose challenges to the current and future understanding of Antarctic biodiversity. Life in the Antarctic and the Southern Ocean is surprisingly rich, and as much at risk from environmental change as it is elsewher

    Defining novel functions for cerebrospinal fluid in ALS pathophysiology

    Get PDF

    Recent advances in amyotrophic lateral sclerosis

    Get PDF

    Novel Culturing Techniques Select for Heterotrophs and Hydrocarbon Degraders in a Subantarctic Soil

    Full text link
    The soil substrate membrane system (SSMS) is a novel micro-culturing technique targeted at terrestrial soil systems. We applied the SSMS to pristine and diesel fuel spiked polar soils, along with traditional solid media culturing and culture independent 454 tag pyrosequencing to elucidate the effects of diesel fuel on the soil community. The SSMS enriched for up to 76% of the total soil diversity within high diesel fuel concentration soils, in contrast to only 26% of the total diversity for the control soils. The majority of organisms originally recovered with the SSMS were lost in the transfer to solid media, with all 300 isolates belonging to Proteobacteria, Firmicutes, Actinobacteria or Bacteroidetes, the four phyla most frequently associated with soil culturing efforts. The soils spiked with high diesel fuel concentrations exhibited reduced species richness, diversity and a selection towards heterotrophs and hydrocarbon degraders in comparison to the control soils. Based on these observations and the unusually high level of overlap in microbial taxa observed between methods, we suggest the SSMS holds potential to exploit hydrocarbon degraders and other targets within simplified bacterial systems, yet is inadequate for soil ecology and ecotoxicology studies where identifying rare oligotrophic species is paramount
    corecore