91 research outputs found

    A web-based library consult service for evidence-based medicine: Technical development

    Get PDF
    BACKGROUND: Incorporating evidence based medicine (EBM) into clinical practice requires clinicians to learn to efficiently gain access to clinical evidence and effectively appraise its validity. Even using current electronic systems, selecting literature-based data to solve a single patient-related problem can require more time than practicing physicians or residents can spare. Clinical librarians, as informationists, are uniquely suited to assist physicians in this endeavor. RESULTS: To improve support for evidence-based practice, we have developed a web-based EBM library consult service application (LCS). Librarians use the LCS system to provide full text evidence-based literature with critical appraisal in response to a clinical question asked by a remote physician. LCS uses an entirely Free/Open Source Software platform and will be released under a Free Software license. In the first year of the LCS project, the software was successfully developed and a reference implementation put into active use. Two years of evaluation of the clinical, educational, and attitudinal impact on physician-users and librarian staff are underway, and expected to lead to refinement and wide dissemination of the system. CONCLUSION: A web-based EBM library consult model may provide a useful way for informationists to assist clinicians, and is feasible to implement

    Rationale and design of the balANZ trial: A randomised controlled trial of low GDP, neutral pH versus standard peritoneal dialysis solution for the preservation of residual renal function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The main hypothesis of this study is that neutral pH, low glucose degradation product (GDP) peritoneal dialysis (PD) fluid better preserves residual renal function in PD patients over time compared with conventional dialysate.</p> <p>Methods/Design</p> <p>Inclusion criteria are adult PD patients (CAPD or APD) aged 18-81 years whose first dialysis was within 90 days prior to or following enrolment and who have a residual GFR ≥ 5 ml/min/1.73 m<sup>2</sup>, a urine output ≥ 400 ml/day and an ability to understand the nature and requirements of this trial. Pregnant or lactating patients or individuals with an active infection at the time of enrolment, a contra-indication to PD or participation in any other clinical trial where an intervention is designed to moderate rate of change of residual renal function are excluded. Patients will be randomized 1:1 to receive either neutral pH, low GDP dialysis solution (Balance<sup>®</sup>) or conventional dialysis solution (Stay.safe<sup>®</sup>) for a period of 2 years. During this 2 year study period, urinary urea and clearance measurements will be performed at 0, 3, 6, 9, 12, 18 and 24 months. The primary outcome measure will be the slope of residual renal function decline, adjusted for centre and presence of diabetic nephropathy. Secondary outcome measures will include time from initiation of peritoneal dialysis to anuria, peritoneal small solute clearance, peritoneal transport status, peritoneal ultrafiltration, technique survival, patient survival, peritonitis rates and adverse events. A total of 185 patients has been recruited into the trial.</p> <p>Discussion</p> <p>This investigator-initiated study has been designed to provide evidence to help nephrologists determine the optimal dialysis solution for preserving residual renal function in PD patients.</p> <p>Trial Registration</p> <p>Australian New Zealand Clinical Trials Registry Number: ACTRN12606000044527</p

    Inactivation of promoter 1B of APC causes partial gene silencing: evidence for a significant role of the promoter in regulation and causative of familial adenomatous polyposis

    Get PDF
    Familial adenomatous polyposis (FAP) is caused by germline mutations in the adenomatous polyposis coli (APC) gene. Two promoters, 1A and 1B, have been recognized in APC, and 1B is thought to have a minor role in the regulation of the gene. We have identified a novel deletion encompassing half of this promoter in the largest family (Family 1) of the Swedish Polyposis Registry. The mutation leads to an imbalance in allele-specific expression of APC, and transcription from promoter 1B was highly impaired in both normal colorectal mucosa and blood from mutation carriers. To establish the significance of promoter 1B in normal colorectal mucosa (from controls), expression levels of specific transcripts from each of the promoters, 1A and 1B, were examined, and the expression from 1B was significantly higher compared with 1A. Significant amounts of transcripts generated from promoter 1B were also determined in a panel of 20 various normal tissues examined. In FAP-related tumors, the APC germline mutation is proposed to dictate the second hit. Mutations leaving two or three out of seven 20-amino-acid repeats in the central domain of APC intact seem to be required for tumorigenesis. We examined adenomas from mutation carriers in Family 1 for second hits in the entire gene without any findings, however, loss of the residual expression of the deleterious allele was observed. Three major conclusions of significant importance in relation to the function of APC can be drawn from this study; (i) germline inactivation of promoter 1B is disease causing in FAP; (ii) expression of transcripts from promoter 1B is generated at considerable higher levels compared with 1A, demonstrating a hitherto unknown importance of 1B; (iii) adenoma formation in FAP, caused by impaired function of promoter 1B, does not require homozygous inactivation of APC allowing for alternative genetic models as basis for adenoma formation

    Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci

    Get PDF
    Background: A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs). Results: We demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an `autosomal Barr body' with less compacted chromatin and incomplete RNAP II exclusion. Conclusions: 3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi

    Super-resolution imaging of remodeled synaptic actin reveals different synergies between NK cell receptors and integrins.

    No full text
    Natural killer (NK) cells secrete lytic granules to directly kill virus-infected or transformed cells and secrete cytokines to communicate with other cells. Three-dimensional super-resolved images of F-actin, lytic granules, and IFN-γ in primary human NK cells stimulated through different activating receptors reveal that both IFN-γ and lytic granules accumulated in domains where the periodicity of the cortical actin mesh at the synapse opened up to be penetrable. Ligation of some activating receptors alone (eg, CD16 or NKG2D) was sufficient to increase the periodicity of the actin mesh, but surprisingly, ligation of others (eg, NKp46 or CD2) was not sufficient to induce cortical actin remodeling unless LFA-1 was coligated. Importantly, influenza virus particles that can be recognized by NK cells similarly did not open the actin mesh but could if LFA-1 was coligated. This leads us to propose that immune cells using germline-encoded receptors to directly recognize foreign proteins can use integrin recognition to differentiate between free pathogens and pathogen-infected cells that will both be present in blood. This distinction would not be required for NK cell receptors, such as NKG2D, which recognize host cell-encoded proteins that can only be found on diseased cells and not pathogens

    Circulating angiogenic factors in early pregnancy and the risk of preeclampsia, intrauterine growth restriction, spontaneous preterm birth, and stillbirth

    No full text
    Objective: To estimate the relationship between maternal serum levels of placental growth factor (PIGF) and soluble fms-like tyrosine kinase-1 (sFlt-1) in early pregnancy with the risk of subsequent adverse outcome. Methods: A nested, case-control study was performed within a prospective cohort study of Down syndrome screening. Maternal serum levels of sFlt-1 and PIGF at 10-14 weeks of gestation were compared between 939 women with complicated pregnancies and 937 controls. Associations were quantified as the odds ratio for a one decile increase in the corrected level of the analyte. Results: Higher levels of sFlt-1 were not associated with the risk of preeclampsia but were associated with a reduced risk of delivery of a small for gestational age infant (odds ratio [OR] 0.92, 95% confidence interval [CI] 0.88-0.96), extreme (24-32 weeks) spontaneous preterm birth (OR 0.90, 95% CI 0.83-0.99), moderate (33-36 weeks) spontaneous preterm birth (OR 0.93, 95% CI 0.88-0.98), and stillbirth associated with abruption or growth restriction (OR 0.77, 95% CI 0.61-0.95). Higher levels of PIGF were associated with a reduced risk of preeclampsia (OR 0.95, 95% CI 0.90-0.99) and delivery of a small for gestational age infant (OR 0.95, 95% CI 0.91-0.99). Associations were minimally affected by adjustment for maternal characteristics. Conclusion: Higher early pregnancy levels of sFlt-1 and PIGF were associated with a decreased risk of adverse perinatal outcome

    Drosophila patterning is established by differential association of mRNAs with P bodies.

    No full text
    The primary embryonic axes in flies, frogs and fish are formed through translational regulation of localized transcripts before fertilization. In Drosophila melanogaster, the axes are established through the transport and translational regulation of gurken (grk) and bicoid (bcd) messenger RNA in the oocyte and embryo. Both transcripts are translationally silent while being localized within the oocyte along microtubules by cytoplasmic dynein. Once localized, grk is translated at the dorsoanterior of the oocyte to send a TGF-α signal to the overlying somatic cells. In contrast, bcd is translationally repressed in the oocyte until its activation in early embryos when it forms an anteroposterior morphogenetic gradient. How this differential translational regulation is achieved is not fully understood. Here, we address this question using ultrastructural analysis, super-resolution microscopy and live-cell imaging. We show that grk and bcd ribonucleoprotein (RNP) complexes associate with electron-dense bodies that lack ribosomes and contain translational repressors. These properties are characteristic of processing bodies (P bodies), which are considered to be regions of cytoplasm where decisions are made on the translation and degradation of mRNA. Endogenous grk mRNA forms dynamic RNP particles that become docked and translated at the periphery of P bodies, where we show that the translational activator Oo18 RNA-binding protein (Orb, a homologue of CEPB) and the anchoring factor Squid (Sqd) are also enriched. In contrast, an excess of grk mRNA becomes localized inside the P bodies, where endogenous bcd mRNA is localized and translationally repressed. Interestingly, bcd mRNA dissociates from P bodies in embryos following egg activation, when it is known to become translationally active. We propose a general principle of translational regulation during axis specification involving remodelling of transport RNPs and dynamic partitioning of different transcripts between the translationally active edge of P bodies and their silent core

    Drosophila patterning is established by differential association of mRNAs with P bodies.

    No full text
    The primary embryonic axes in flies, frogs and fish are formed through translational regulation of localized transcripts before fertilization. In Drosophila melanogaster, the axes are established through the transport and translational regulation of gurken (grk) and bicoid (bcd) messenger RNA in the oocyte and embryo. Both transcripts are translationally silent while being localized within the oocyte along microtubules by cytoplasmic dynein. Once localized, grk is translated at the dorsoanterior of the oocyte to send a TGF-α signal to the overlying somatic cells. In contrast, bcd is translationally repressed in the oocyte until its activation in early embryos when it forms an anteroposterior morphogenetic gradient. How this differential translational regulation is achieved is not fully understood. Here, we address this question using ultrastructural analysis, super-resolution microscopy and live-cell imaging. We show that grk and bcd ribonucleoprotein (RNP) complexes associate with electron-dense bodies that lack ribosomes and contain translational repressors. These properties are characteristic of processing bodies (P bodies), which are considered to be regions of cytoplasm where decisions are made on the translation and degradation of mRNA. Endogenous grk mRNA forms dynamic RNP particles that become docked and translated at the periphery of P bodies, where we show that the translational activator Oo18 RNA-binding protein (Orb, a homologue of CEPB) and the anchoring factor Squid (Sqd) are also enriched. In contrast, an excess of grk mRNA becomes localized inside the P bodies, where endogenous bcd mRNA is localized and translationally repressed. Interestingly, bcd mRNA dissociates from P bodies in embryos following egg activation, when it is known to become translationally active. We propose a general principle of translational regulation during axis specification involving remodelling of transport RNPs and dynamic partitioning of different transcripts between the translationally active edge of P bodies and their silent core
    corecore