4 research outputs found

    Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides

    Full text link
    All-optical signal processing is envisioned as an approach to dramatically decrease power consumption and speed up performance of next-generation optical telecommunications networks. Nonlinear optical effects, such as four-wave mixing (FWM) and parametric gain, have long been explored to realize all-optical functions in glass fibers. An alternative approach is to employ nanoscale engineering of silicon waveguides to enhance the optical nonlinearities by up to five orders of magnitude, enabling integrated chip-scale all-optical signal processing. Previously, strong two-photon absorption (TPA) of the telecom-band pump has been a fundamental and unavoidable obstacle, limiting parametric gain to values on the order of a few dB. Here we demonstrate a silicon nanophotonic optical parametric amplifier exhibiting gain as large as 25.4 dB, by operating the pump in the mid-IR near one-half the band-gap energy (E~0.55eV, lambda~2200nm), at which parasitic TPA-related absorption vanishes. This gain is high enough to compensate all insertion losses, resulting in 13 dB net off-chip amplification. Furthermore, dispersion engineering dramatically increases the gain bandwidth to more than 220 nm, all realized using an ultra-compact 4 mm silicon chip. Beyond its significant relevance to all-optical signal processing, the broadband parametric gain also facilitates the simultaneous generation of multiple on-chip mid-IR sources through cascaded FWM, covering a 500 nm spectral range. Together, these results provide a foundation for the construction of silicon-based room-temperature mid-IR light sources including tunable chip-scale parametric oscillators, optical frequency combs, and supercontinuum generators
    corecore