24 research outputs found

    Validation of a prognostic scoring system for locally recurrent nasopharyngeal carcinoma treated by stereotactic radiosurgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Selection of patients with local failure of nasopharyngeal carcinoma (NPC) for appropriate type of salvage treatment can be difficult due to the lack of data on comparative efficacy of different salvage treatments. The purpose of the present study was to validate a previously published prognostic scoring system for local failures of NPC treated by radiosurgery based on reported results in the literature.</p> <p>Methods</p> <p>A literature search yielded 3 published reports on the use of radiosurgery as salvage treatment of NPC that contained sufficient clinical information for validation of the scoring system. Prognostic scores of 18 patients from these reports were calculated and actuarial survival rates were estimated and compared to the original cohort used to design the prognostic scoring system. The area under the receiver operating characteristic curve was also determined and compared between the current and original patient groups.</p> <p>Results</p> <p>The calculated prognostic scores ranged from 0.32 to 1.21, with 15 patients assigned to the poor prognostic group and 3 to the intermediate prognostic group. The actuarial 3-year survival rates in the intermediate and poor prognostic groups were 67% and 0%, respectively. These results were comparable to the observed 3-year survival rates of 74% and 23% in the intermediate and poor prognostic group in the original reports. The area under the receiver operating characteristic curve for the current patient group was 0.846 which was similar to 0.841 in the original group.</p> <p>Conclusion</p> <p>The previously published prognostic scoring system demonstrated good prediction of treatment outcome after radiosurgery in a small group of NPC patients with poor prognosis. Prospective study to validate the scoring system is currently being carried out in our institution.</p

    Fractionated stereotactic radiotherapy for skull base tumors: analysis of treatment accuracy using a stereotactic mask fixation system

    Get PDF
    Background: To assess the accuracy of fractionated stereotactic radiotherapy (FSRT) using a stereotactic mask fixation system. Patients and Methods: Sixteen patients treated with FSRT were involved in the study. A commercial stereotactic mask fixation system (BrainLAB AG) was used for patient immobilization. Serial CT scans obtained before and during FSRT were used to assess the accuracy of patient immobilization by comparing the isocenter position. Daily portal imaging were acquired to establish day to day patient position variation. Displacement errors along the different directions were calculated as combination of systematic and random errors. Results: The mean isocenter displacements based on localization and verification CT imaging were 0.1 mm (SD 0.3 mm) in the lateral direction, 0.1 mm (SD 0.4 mm) in the anteroposterior, and 0.3 mm (SD 0.4 mm) in craniocaudal direction. The mean 3D displacement was 0.5 mm (SD 0.4 mm), being maximum 1.4 mm. No significant differences were found during the treatment (P = 0.4). The overall isocenter displacement as calculated by 456 anterior and lateral portal images were 0.3 mm (SD 0.9 mm) in the mediolateral direction, -0.2 mm (SD 1 mm) in the anteroposterior direction, and 0.2 mm (SD 1.1 mm) in the craniocaudal direction. The largest displacement of 2.7 mm was seen in the cranio-caudal direction, with 95% of displacements < 2 mm in any direction. Conclusions: The results indicate that the setup error of the presented mask system evaluated by CT verification scans and portal imaging are minimal. Reproducibility of the isocenter position is in the best range of positioning reproducibility reported for other stereotactic systems

    Frameless linac-based stereotactic radiosurgery (SRS) for brain metastases: analysis of patient repositioning using a mask fixation system and clinical outcomes

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To assess the accuracy of patient repositioning and clinical outcomes of frameless stereotactic radiosurgery (SRS) for brain metastases using a stereotactic mask fixation system.</p> <p>Patients and Methods</p> <p>One hundred two patients treated consecutively with frameless SRS as primary treatment at University of Rome Sapienza Sant'Andrea Hospital between October 2008 and April 2010 and followed prospectively were involved in the study. A commercial stereotactic mask fixation system (BrainLab) was used for patient immobilization. A computerized tomography (CT) scan obtained immediately before SRS was used to evaluate the accuracy of patient repositioning in the mask by comparing the isocenter position to the isocenter position established in the planning CT. Deviations of isocenter coordinates in each direction and 3D displacement were calculated. Overall survival, brain control, and local control were estimated using the Kaplan-Meier method calculated from the time of SRS.</p> <p>Results</p> <p>The mean measured isocenter displacements were 0.12 mm (SD 0.35 mm) in the lateral direction, 0.2 mm (SD 0.4 mm) in the anteroposterior, and 0.4 mm (SD 0.6 mm) in craniocaudal direction. The maximum displacement of 2.1 mm was seen in craniocaudal direction. The mean 3D displacement was 0.5 mm (SD 0.7 mm), being maximum 2.9 mm. The median survival was 15.5 months, and 1-year and 2-year survival rates were 58% and 24%, respectively. Nine patients recurred locally after SRS, with 1-year and 2-year local control rates of 91% and 82%, respectively. Stable extracranial disease (P = 0.001) and KPS > 70 (P = 0.01) were independent predictors of survival.</p> <p>Conclusions</p> <p>Frameless SRS is an effective treatment in the management of patients with brain metastases. The presented non-invasive mask-based fixation stereotactic system is associated with a high degree of patient repositioning accuracy; however, a careful evaluation is essential since occasional errors up to 3 mm may occur.</p

    Author Correction: Federated learning enables big data for rare cancer boundary detection.

    Get PDF

    Radiation Carcinogenesis

    No full text

    The potential role of MR-guided adaptive radiotherapy in pediatric oncology: Results from a SIOPE-COG survey.

    No full text
    Background and purpose Magnetic resonance guided radiotherapy (MRgRT) has been successfully implemented for several routine clinical applications in adult patients. The purpose of this study is to map the potential benefit of MRgRT on toxicity reduction and outcome in pediatric patients treated with curative intent for primary and metastatic sites.Materials and methods Between May and August 2020, a survey was distributed among SIOPE- and COG-affiliated radiotherapy departments, treating at least 25 pediatrics patients annually and being (candidate) users of a MRgRT system. The survey consisted of a table with 45 rows (clinical scenarios for primary (n = 28) and metastatic (n = 17) tumors) and 7 columns (toxicity reduction, outcome improvement, PTV margin reduction, target volume daily adaptation, online re-planning, intrafraction motion compensation and on-board functional imaging) and the option to answer by 'yes/no' . Afterwards, the Dutch national radiotherapy cohort was used to estimate the percentage of pediatric treatments that may benefit from MRgRT.Results The survey was completed by 12/17 (71% response rate) institutions meeting the survey inclusion criteria. Responders indicated an 'expected benefit' from MRgRT for toxicity/outcome in 7% (for thoracic lymphomas and abdominal rhabdomyosarcomas)/0% and 18% (for mediastinal lymph nodes, lymph nodes located in the liver/splenic hilum, and liver metastases)/0% of the considered scenarios for the primary and metastatic tumor sites, respectively, and a 'possible benefit' was estimated in 64%/46% and 47%/59% of the scenarios. When translating the survey outcome into a clinical perspective a toxicity/outcome benefit, either expected or possible, was anticipated for 55%/24% of primary sites and 62%/38% of the metastatic sites.Conclusion Although the benefit of MRgRT in pediatric radiation oncology is estimated to be modest, the potential role for reducing toxicity and improving clinical outcomes warrants further investigation. This fits best within the context of prospective studies or registration trials
    corecore