29 research outputs found
Severity dependent distribution of impairments in PSP and CBS: Interactive visualizations
BACKGROUND: Progressive supranuclear palsy (PSP) -Richardson's Syndrome and Corticobasal Syndrome (CBS) are the two classic clinical syndromes associated with underlying four repeat (4R) tau pathology. The PSP Rating Scale is a commonly used assessment in PSP clinical trials; there is an increasing interest in designing combined 4R tauopathy clinical trials involving both CBS and PSP. OBJECTIVES: To determine contributions of each domain of the PSP Rating Scale to overall severity and characterize the probable sequence of clinical progression of PSP as compared to CBS. METHODS: Multicenter clinical trial and natural history study data were analyzed from 545 patients with PSP and 49 with CBS. Proportional odds models were applied to model normalized cross-sectional PSP Rating Scale, estimating the probability that a patient would experience impairment in each domain using the PSP Rating Scale total score as the index of overall disease severity. RESULTS: The earliest symptom domain to demonstrate impairment in PSP patients was most likely to be Ocular Motor, followed jointly by Gait/Midline and Daily Activities, then Limb Motor and Mentation, and finally Bulbar. For CBS, Limb Motor manifested first and ocular showed less probability of impairment throughout the disease spectrum. An online tool to visualize predicted disease progression was developed to predict relative disability on each subscale per overall disease severity. CONCLUSION: The PSP Rating Scale captures disease severity in both PSP and CBS. Modelling how domains change in relation to one other at varying disease severities may facilitate detection of therapeutic effects in future clinical trials
Biased-corrected richness estimates for the Amazonian tree flora
Amazonian forests are extraordinarily diverse, but the estimated species richness is very much debated. Here, we apply an ensemble of parametric estimators and a novel technique that includes conspecific spatial aggregation to an extended database of forest plots with up-to-date taxonomy. We show that the species abundance distribution of Amazonia is best approximated by a logseries with aggregated individuals, where aggregation increases with rarity. By averaging several methods to estimate total richness, we confirm that over 15,000 tree species are expected to occur in Amazonia. We also show that using ten times the number of plots would result in an increase to just ~50% of those 15,000 estimated species. To get a more complete sample of all tree species, rigorous field campaigns may be needed but the number of trees in Amazonia will remain an estimate for years to come
Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC
DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6 × 6 × 6 m 3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties
Geographic patterns of tree dispersal modes in Amazonia and their ecological correlates
This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: The percentages of dispersal modes per plot are included as Supporting Information (Table S7, based on 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests in Amazonia). The dispersal modes assigned to these 5433 species and morphospecies are also included as Supporting Information (Table S8).Aim: To investigate the geographic patterns and ecological correlates in the geographic distribution of the most common tree dispersal modes in Amazonia (endozoochory, synzoochory, anemochory and hydrochory). We examined if the proportional abundance of these dispersal modes could be explained by the availability of dispersal agents (disperser-availability hypothesis) and/or the availability of resources for constructing zoochorous fruits (resource-availability hypothesis). Time period: Tree-inventory plots established between 1934 and 2019. Major taxa studied: Trees with a diameter at breast height (DBH) ≥ 9.55 cm. Location: Amazonia, here defined as the lowland rain forests of the Amazon River basin and the Guiana Shield. Methods: We assigned dispersal modes to a total of 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests. We investigated geographic patterns in the proportional abundance of dispersal modes. We performed an abundance-weighted mean pairwise distance (MPD) test and fit generalized linear models (GLMs) to explain the geographic distribution of dispersal modes. Results: Anemochory was significantly, positively associated with mean annual wind speed, and hydrochory was significantly higher in flooded forests. Dispersal modes did not consistently show significant associations with the availability of resources for constructing zoochorous fruits. A lower dissimilarity in dispersal modes, resulting from a higher dominance of endozoochory, occurred in terra-firme forests (excluding podzols) compared to flooded forests. Main conclusions: The disperser-availability hypothesis was well supported for abiotic dispersal modes (anemochory and hydrochory). The availability of resources for constructing zoochorous fruits seems an unlikely explanation for the distribution of dispersal modes in Amazonia. The association between frugivores and the proportional abundance of zoochory requires further research, as tree recruitment not only depends on dispersal vectors but also on conditions that favour or limit seedling recruitment across forest types.Colombian institution Departamento Administrativo de Ciencia, Tecnología e Innovación COLCIENCIASFaculty of Sciences, Universidad de los Ande
Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology
In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies. Results show that constraints formed by regional relative abundances of genera explain eight times more of local relative abundances than constraints based on directional selection for specific functional traits, although the latter does show clear signals of environmental dependency. These results provide a quantitative insight by inference from large-scale data using cross-disciplinary methods, furthering our understanding of ecological dynamics
More than 10,000 pre-Columbian earthworks are still hidden throughout Amazonia.
This is the author accepted manuscript. The final version is available from the American Association for the Advancement of Science via the DOI in this recordData and materials availability: Data from publicly available sources are cited in the supplementary materials. Other data and computer codes used in the analysis are publicly
available at Zenodo repositoryIndigenous societies are known to have occupied the Amazon basin for more than 12,000 years, but the scale of their influence on Amazonian forests remains uncertain. We report the discovery, using LIDAR (light detection and ranging) information from across the basin, of 24 previously undetected pre-Columbian earthworks beneath the forest canopy. Modeled distribution and abundance of large-scale archaeological sites across Amazonia suggest that between 10,272 and 23,648 sites remain to be discovered and that most will be found in the southwest. We also identified 53 domesticated tree species significantly associated with earthwork occurrence probability, likely suggesting past management practices. Closed-canopy forests across Amazonia are likely to contain thousands of undiscovered archaeological sites around which pre-Columbian societies actively modified forests, a discovery that opens opportunities for better understanding the magnitude of ancient human influence on Amazonia and its current state.Coordination of Superior Level Staff Improvement under the Academic Excellence Program (CAPES/PROEX)Coordination of Superior Level Staff Improvement under the Academic Excellence Program (CAPES/PROEX)Coordination of Superior Level Staff Improvement under the Academic Excellence Program (CAPES/PROEX)National Council for Scientific and Technological Development (CNPQ)National Council for Scientific and Technological Development (CNPQ)National Council for Scientific and Technological Development (CNPQ)European Research CouncilSão Paulo Research Foundation (FAPESP)Amazon FundSão Paulo Research Foundation (FAPESP)PVEMEC/MCTI/CAPES/CNPq/FAPEuropean Union’s Horizon 2020European Union’s Horizon 2020CAPESANRMCT/CNPq/CT-INFRA/GEOMAMCT/CNPq/CT-INFRA/GEOMACAPES/PDSECAPES/FapespaCNPqFAPESPCNPq/CAPES/FAPS/BC-NewtonFAPEMATRoyal Society GCRF International Collaboration AwardNSF/DEBCNPQ/PQNatural Environment Research Council (NERC)Natural Environment Research Council (NERC)Natural Environment Research Council (NERC)Natural Environment Research Council (NERC)Natural Environment Research Council (NERC)Natural Environment Research Council (NERC)Natural Environment Research Council (NERC)Gordon and Betty Moore Foundatio
Recommended from our members
Doping liquid argon with xenon in ProtoDUNE Single-Phase: effects on scintillation light
Abstract
Doping of liquid argon TPCs (LArTPCs) with a small
concentration of xenon is a technique for light-shifting and
facilitates the detection of the liquid argon scintillation
light. In this paper, we present the results of the first doping
test ever performed in a kiloton-scale LArTPC. From February to May
2020, we carried out this special run in the single-phase DUNE Far
Detector prototype (ProtoDUNE-SP) at CERN, featuring 720 t of total
liquid argon mass with 410 t of fiducial mass. A 5.4 ppm nitrogen
contamination was present during the xenon doping campaign. The goal
of the run was to measure the light and charge response of the
detector to the addition of xenon, up to a concentration of
18.8 ppm. The main purpose was to test the possibility for
reduction of non-uniformities in light collection, caused by
deployment of photon detectors only within the anode planes. Light
collection was analysed as a function of the xenon concentration, by
using the pre-existing photon detection system (PDS) of ProtoDUNE-SP
and an additional smaller set-up installed specifically for this
run. In this paper we first summarize our current understanding of
the argon-xenon energy transfer process and the impact of the
presence of nitrogen in argon with and without xenon dopant. We then
describe the key elements of ProtoDUNE-SP and the injection method
deployed. Two dedicated photon detectors were able to collect the
light produced by xenon and the total light. The ratio of these
components was measured to be about 0.65 as 18.8 ppm of xenon were
injected. We performed studies of the collection efficiency as a
function of the distance between tracks and light detectors,
demonstrating enhanced uniformity of response for the anode-mounted
PDS. We also show that xenon doping can substantially recover light
losses due to contamination of the liquid argon by nitrogen.</jats:p
Search for long-lived, weakly interacting particles that decay to displaced hadronic jets in proton-proton collisions at root s=8 TeV with the ATLAS detector
A search for the decay of neutral, weakly interacting, long-lived particles using data collected by the ATLAS detector at the LHC is presented. This analysis uses the full data set recorded in 2012: 20.3 fb(-1) of proton-proton collision data at root s = 8 TeV. The search employs techniques for reconstructing decay vertices of long-lived particles decaying to jets in the inner tracking detector and muon spectrometer. Signal events require at least two reconstructed vertices. No significant excess of events over the expected background is found, and limits as a function of proper lifetime are reported for the decay of the Higgs boson and other scalar bosons to long-lived particles and for Hidden Valley Z' and Stealth SUSY benchmark models. The first search results for displaced decays in Z' and Stealth SUSY models are presented. The upper bounds of the excluded proper lifetimes are the most stringent to date