56 research outputs found
Genome Sequence Analysis of Dengue Virus 1 Isolated in Key West, Florida
Dengue virus (DENV) is transmitted to humans through the bite of mosquitoes. In November 2010, a dengue outbreak was reported in Monroe County in southern Florida (FL), including greater than 20 confirmed human cases. The virus collected from the human cases was verified as DENV serotype 1 (DENV-1) and one isolate was provided for sequence analysis. RNA was extracted from the DENV-1 isolate and was used in reverse transcription polymerase chain reaction (RT-PCR) to amplify PCR fragments to sequence. Nucleic acid primers were designed to generate overlapping PCR fragments that covered the entire genome. The DENV-1 isolate found in Key West (KW), FL was sequenced for whole genome characterization. Sequence assembly, Genbank searches, and recombination analyses were performed to verify the identity of the genome sequences and to determine percent similarity to known DENV-1 sequences. We show that the KW DENV-1 strain is 99% identical to Nicaraguan and Mexican DENV-1 strains. Phylogenetic and recombination analyses suggest that the DENV-1 isolated in KW originated from Nicaragua (NI) and the KW strain may circulate in KW. Also, recombination analysis results detected recombination events in the KW strain compared to DENV-1 strains from Puerto Rico. We evaluate the relative growth of KW strain of DENV-1 compared to other dengue viruses to determine whether the underlying genetics of the strain is associated with a replicative advantage, an important consideration since local transmission of DENV may result because domestic tourism can spread DENVs
Recombination and positive selection identified in complete genome sequences of Japanese encephalitis virus
The mosquito-borne Japanese encephalitis virus (JEV) causes encephalitis in man but not in pigs. Complete genomes of a human, mosquito and pig isolate from outbreaks in 1982 and 1985 in Thailand were sequenced with the aim of identifying determinants of virulence that may explain the differences in outcomes of JEV infection between pigs and man. Phylogenetic analysis revealed that five of these isolates belonged to genotype I, but the 1982 mosquito isolate belonged to genotype III. There was no evidence of recombination among the Thai isolates, but there were phylogenetic signals suggestive of recombination in a 1994 Korean isolate (K94P05). Two sites of the genome under positive selection were identified: codons 996 and 2296 (amino acids 175 of the non-structural protein NS1 and 24 of NS4B, respectively). A structurally significant substitution was seen at NS4B position 24 of the human isolate compared with the mosquito and pig isolates from the 1985 outbreak in Thailand. The potential importance of the two sites in the evolution and ecology of JEV merits further investigation
Differential Trends in the Codon Usage Patterns in HIV-1 Genes
Host-pathogen interactions underlie one of the most complex evolutionary phenomena resulting in continual adaptive genetic changes, where pathogens exploit the host's molecular resources for growth and survival, while hosts try to eliminate the pathogen. Deciphering the molecular basis of host–pathogen interactions is useful in understanding the factors governing pathogen evolution and disease propagation. In host-pathogen context, a balance between mutation, selection, and genetic drift is known to maintain codon bias in both organisms. Studies revealing determinants of the bias and its dynamics are central to the understanding of host-pathogen evolution. We considered the Human Immunodeficiency Virus (HIV) type 1 and its human host to search for evolutionary signatures in the viral genome. Positive selection is known to dominate intra-host evolution of HIV-1, whereas high genetic variability underlies the belief that neutral processes drive inter-host differences. In this study, we analyze the codon usage patterns of HIV-1 genomes across all subtypes and clades sequenced over a period of 23 years. We show presence of unique temporal correlations in the codon bias of three HIV-1 genes illustrating differential adaptation of the HIV-1 genes towards the host preferred codons. Our results point towards gene-specific translational selection to be an important force driving the evolution of HIV-1 at the population level
Exploring the Complexity of the HIV-1 Fitness Landscape
Although fitness landscapes are central to evolutionary theory, so far no biologically realistic examples for large-scale fitness landscapes have been described. Most currently available biological examples are restricted to very few loci or alleles and therefore do not capture the high dimensionality characteristic of real fitness landscapes. Here we analyze large-scale fitness landscapes that are based on predictive models for in vitro replicative fitness of HIV-1. We find that these landscapes are characterized by large correlation lengths, considerable neutrality, and high ruggedness and that these properties depend only weakly on whether fitness is measured in the absence or presence of different antiretrovirals. Accordingly, adaptive processes on these landscapes depend sensitively on the initial conditions. While the relative extent to which mutations affect fitness on their own (main effects) or in combination with other mutations (epistasis) is a strong determinant of these properties, the fitness landscape of HIV-1 is considerably less rugged, less neutral, and more correlated than expected from the distribution of main effects and epistatic interactions alone. Overall this study confirms theoretical conjectures about the complexity of biological fitness landscapes and the importance of the high dimensionality of the genetic space in which adaptation takes place
Genomic Tools for Evolution and Conservation in the Chimpanzee: Pan troglodytes ellioti Is a Genetically Distinct Population
In spite of its evolutionary significance and conservation importance, the population structure of the common chimpanzee, Pan troglodytes, is still poorly understood. An issue of particular controversy is whether the proposed fourth subspecies of chimpanzee, Pan troglodytes ellioti, from parts of Nigeria and Cameroon, is genetically distinct. Although modern high-throughput SNP genotyping has had a major impact on our understanding of human population structure and demographic history, its application to ecological, demographic, or conservation questions in non-human species has been extremely limited. Here we apply these tools to chimpanzee population structure, using ∼700 autosomal SNPs derived from chimpanzee genomic data and a further ∼100 SNPs from targeted re-sequencing. We demonstrate conclusively the existence of P. t. ellioti as a genetically distinct subgroup. We show that there is clear differentiation between the verus, troglodytes, and ellioti populations at the SNP and haplotype level, on a scale that is greater than that separating continental human populations. Further, we show that only a small set of SNPs (10–20) is needed to successfully assign individuals to these populations. Tellingly, use of only mitochondrial DNA variation to classify individuals is erroneous in 4 of 54 cases, reinforcing the dangers of basing demographic inference on a single locus and implying that the demographic history of the species is more complicated than that suggested analyses based solely on mtDNA. In this study we demonstrate the feasibility of developing economical and robust tests of individual chimpanzee origin as well as in-depth studies of population structure. These findings have important implications for conservation strategies and our understanding of the evolution of chimpanzees. They also act as a proof-of-principle for the use of cheap high-throughput genomic methods for ecological questions
The predictive value of early behavioural assessments in pet dogs: a longitudinal study from neonates to adults
Studies on behavioural development in domestic dogs are of relevance for matching puppies with the right families, identifying predispositions for behavioural problems at an early stage, and predicting suitability for service dog work, police or military service. The literature is, however, inconsistent regarding the predictive value of tests performed during the socialisation period. Additionally, some practitioners use tests with neonates to complement later assessments for selecting puppies as working dogs, but these have not been validated. We here present longitudinal data on a cohort of Border collies, followed up from neonate age until adulthood. A neonate test was conducted with 99 Border collie puppies aged 2–10 days to assess activity, vocalisations when isolated and sucking force. At the age of 40–50 days, 134 puppies (including 93 tested as neonates) were tested in a puppy test at their breeders' homes. All dogs were adopted as pet dogs and 50 of them participated in a behavioural test at the age of 1.5 to 2 years with their owners. Linear mixed models found little correspondence between individuals' behaviour in the neonate, puppy and adult test. Exploratory activity was the only behaviour that was significantly correlated between the puppy and the adult test. We conclude that the predictive validity of early tests for predicting specific behavioural traits in adult pet dogs is limited
Using Non-Homogeneous Models of Nucleotide Substitution to Identify Host Shift Events: Application to the Origin of the 1918 ‘Spanish’ Influenza Pandemic Virus
Nonhomogeneous Markov models of nucleotide substitution have received scant attention. Here we explore the possibility of using nonhomogeneous models to identify host shift nodes along phylogenetic trees of pathogens evolving in different hosts. It has been noticed that influenza viruses show marked differences in nucleotide composition in human and avian hosts. We take advantage of this fact to identify the host shift event that led to the 1918 ‘Spanish’ influenza. This disease killed over 50 million people worldwide, ranking it as the deadliest pandemic in recorded history. Our model suggests that the eight RNA segments which eventually became the 1918 viral genome were introduced into a mammalian host around 1882–1913. The viruses later diverged into the classical swine and human H1N1 influenza lineages around 1913–1915. The last common ancestor of human strains dates from February 1917 to April 1918. Because pigs are more readily infected with avian influenza viruses than humans, it would seem that they were the original recipient of the virus. This would suggest that the virus was introduced into humans sometime between 1913 and 1918
The Origin and Evolutionary History of HIV-1 Subtype C in Senegal
Background: The classification of HIV-1 strains in subtypes and Circulating Recombinant Forms (CRFs) has helped in tracking the course of the HIV pandemic. In Senegal, which is located at the tip of West Africa, CRF02_AG predominates in the general population and Female Sex Workers (FSWs). In contrast, 40% of Men having Sex with Men (MSM) in Senegal are infected with subtype C. In this study we analyzed the geographical origins and introduction dates of HIV-1 C in Senegal in order to better understand the evolutionary history of this subtype, which predominates today in the MSM population Methodology/Principal Findings: We used a combination of phylogenetic analyses and a Bayesian coalescent-based approach, to study the phylogenetic relationships in pol of 56 subtype C isolates from Senegal with 3,025 subtype C strains that were sampled worldwide. Our analysis shows a significantly well supported cluster which contains all subtype C strains that circulate among MSM in Senegal. The MSM cluster and other strains from Senegal are widely dispersed among the different subclusters of African HIV-1 C strains, suggesting multiple introductions of subtype C in Senegal from many different southern and east African countries. More detailed analyses show that HIV-1 C strains from MSM are more closely related to those from southern Africa. The estimated date of the MRCA of subtype C in the MSM population in Senegal is estimated to be in the early 80's. Conclusions/Significance: Our evolutionary reconstructions suggest that multiple subtype C viruses with a common ancestor originating in the early 1970s entered Senegal. There was only one efficient spread in the MSM population, which most likely resulted from a single introduction, underlining the importance of high-risk behavior in spread of viruses
Phylogenetic and Evolutionary Patterns in Microbial Carotenoid Biosynthesis Are Revealed by Comparative Genomics
BACKGROUND: Carotenoids are multifunctional, taxonomically widespread and biotechnologically important pigments. Their biosynthesis serves as a model system for understanding the evolution of secondary metabolism. Microbial carotenoid diversity and evolution has hitherto been analyzed primarily from structural and biosynthetic perspectives, with the few phylogenetic analyses of microbial carotenoid biosynthetic proteins using either used limited datasets or lacking methodological rigor. Given the recent accumulation of microbial genome sequences, a reappraisal of microbial carotenoid biosynthetic diversity and evolution from the perspective of comparative genomics is warranted to validate and complement models of microbial carotenoid diversity and evolution based upon structural and biosynthetic data. METHODOLOGY/PRINCIPAL FINDINGS: Comparative genomics were used to identify and analyze in silico microbial carotenoid biosynthetic pathways. Four major phylogenetic lineages of carotenoid biosynthesis are suggested composed of: (i) Proteobacteria; (ii) Firmicutes; (iii) Chlorobi, Cyanobacteria and photosynthetic eukaryotes; and (iv) Archaea, Bacteroidetes and two separate sub-lineages of Actinobacteria. Using this phylogenetic framework, specific evolutionary mechanisms are proposed for carotenoid desaturase CrtI-family enzymes and carotenoid cyclases. Several phylogenetic lineage-specific evolutionary mechanisms are also suggested, including: (i) horizontal gene transfer; (ii) gene acquisition followed by differential gene loss; (iii) co-evolution with other biochemical structures such as proteorhodopsins; and (iv) positive selection. CONCLUSIONS/SIGNIFICANCE: Comparative genomics analyses of microbial carotenoid biosynthetic proteins indicate a much greater taxonomic diversity then that identified based on structural and biosynthetic data, and divides microbial carotenoid biosynthesis into several, well-supported phylogenetic lineages not evident previously. This phylogenetic framework is applicable to understanding the evolution of specific carotenoid biosynthetic proteins or the unique characteristics of carotenoid biosynthetic evolution in a specific phylogenetic lineage. Together, these analyses suggest a "bramble" model for microbial carotenoid biosynthesis whereby later biosynthetic steps exhibit greater evolutionary plasticity and reticulation compared to those closer to the biosynthetic "root". Structural diversification may be constrained ("trimmed") where selection is strong, but less so where selection is weaker. These analyses also highlight likely productive avenues for future research and bioprospecting by identifying both gaps in current knowledge and taxa which may particularly facilitate carotenoid diversification
Bayesian molecular clock dating of species divergences in the genomics era
It has been five decades since the proposal of the molecular clock hypothesis, which states that the rate of evolution at the molecular level is constant through time and among species. This hypothesis has become a powerful tool in evolutionary biology, making it possible to use molecular sequences to estimate the geological ages of species divergence events. With recent advances in Bayesian clock dating methodology and the explosive accumulation of genetic sequence data, molecular clock dating has found widespread applications, from tracking virus pandemics, to studying the macroevolutionary process of speciation and extinction, to estimating a timescale for Life on Earth
- …