160 research outputs found
Measuring Physical Demands in Basketball: An Explorative Systematic Review of Practices.
BACKGROUND:Measuring the physical work and resultant acute psychobiological responses of basketball can help to better understand and inform physical preparation models and improve overall athlete health and performance. Recent advancements in training load monitoring solutions have coincided with increases in the literature describing the physical demands of basketball, but there are currently no reviews that summarize all the available basketball research. Additionally, a thorough appraisal of the load monitoring methodologies and measures used in basketball is lacking in the current literature. This type of critical analysis would allow for consistent comparison between studies to better understand physical demands across the sport. OBJECTIVES:The objective of this systematic review was to assess and critically evaluate the methods and technologies used for monitoring physical demands in competitive basketball athletes. We used the term 'training load' to encompass the physical demands of both training and game activities, with the latter assumed to provide a training stimulus as well. This review aimed to critique methodological inconsistencies, establish operational definitions specific to the sport, and make recommendations for basketball training load monitoring practice and reporting within the literature. METHODS:A systematic review of the literature was performed using EBSCO, PubMed, SCOPUS, and Web of Science to identify studies through March 2020. Electronic databases were searched using terms related to basketball and training load. Records were included if they used a competitive basketball population and incorporated a measure of training load. This systematic review was registered with the International Prospective Register of Systematic Reviews (PROSPERO Registration # CRD42019123603), and approved under the National Basketball Association (NBA) Health Related Research Policy. RESULTS:Electronic and manual searches identified 122 papers that met the inclusion criteria. These studies reported the physical demands of basketball during training (n = 56), competition (n = 36), and both training and competition (n = 30). Physical demands were quantified with a measure of internal training load (n = 52), external training load (n = 29), or both internal and external measures (n = 41). These studies examined males (n = 76), females (n = 34), both male and female (n = 9), and a combination of youth (i.e. under 18 years, n = 37), adults (i.e. 18 years or older, n = 77), and both adults and youth (n = 4). Inconsistencies related to the reporting of competition level, methodology for recording duration, participant inclusion criteria, and validity of measurement systems were identified as key factors relating to the reporting of physical demands in basketball and summarized for each study. CONCLUSIONS:This review comprehensively evaluated the current body of literature related to training load monitoring in basketball. Within this literature, there is a clear lack of alignment in applied practices and methodological framework, and with only small data sets and short study periods available at this time, it is not possible to draw definitive conclusions about the true physical demands of basketball. A detailed understanding of modern technologies in basketball is also lacking, and we provide specific guidelines for defining and applying duration measurement methodologies, vetting the validity and reliability of measurement tools, and classifying competition level in basketball to address some of the identified knowledge gaps. Creating alignment in best-practice basketball research methodology, terminology and reporting may lead to a more robust understanding of the physical demands associated with the sport, thereby allowing for exploration of other research areas (e.g. injury, performance), and improved understanding and decision making in applying these methods directly with basketball athletes
Quantifying Training and Game Demands of a National Basketball Association Season.
Purpose: There are currently no data describing combined practice and game load demands throughout a National Basketball Association (NBA) season. The primary objective of this study was to integrate external load data garnered from all on-court activity throughout an NBA season, according to different activity and player characteristics. Methods: Data from 14 professional male basketball players (mean ± SD; age, 27.3 ± 4.8 years; height, 201.0 ± 7.2 cm; body mass, 104.9 ± 10.6 kg) playing for the same club during the 2017-2018 NBA season were retrospectively analyzed. Game and training data were integrated to create a consolidated external load measure, which was termed integrated load. Players were categorized by years of NBA experience (1-2y, 3-5y, 6-9y, and 10 + y), position (frontcourt and backcourt), and playing rotation status (starter, rotation, and bench). Results: Total weekly duration was significantly different (p < 0.001) between years of NBA playing experience, with duration highest in 3-5 year players, compared with 6-9 (d = 0.46) and 10+ (d = 0.78) year players. Starters experienced the highest integrated load, compared with bench (d = 0.77) players. There were no significant differences in integrated load or duration between positions. Conclusion: This is the first study to describe the seasonal training loads of NBA players for an entire season and shows that a most training load is accumulated in non-game activities. This study highlights the need for integrated and unobtrusive training load monitoring, with engagement of all stakeholders to develop well-informed individualized training prescription to optimize preparation of NBA players
Understanding 'monitoring' data-the association between measured stressors and athlete responses within a holistic basketball performance framework.
This study examined associations between cumulative training load, travel demands and recovery days with athlete-reported outcome measures (AROMs) and countermovement jump (CMJ) performance in professional basketball. Retrospective analysis was performed on data collected from 23 players (mean±SD: age = 24.7±2.5 years, height = 198.3±7.6 cm, body mass = 98.1±9.0 kg, wingspan = 206.8±8.4 cm) from 2018-2020 in the National Basketball Association G-League. Linear mixed models were used to describe variation in AROMs and CMJ data in relation to cumulative training load (previous 3- and 10-days), hours travelled (previous 3- and 10-day), days away from the team's home city, recovery days (i.e., no travel/minimal on-court activity) and individual factors (e.g., age, fatigue, soreness). Cumulative 3-day training load had negative associations with fatigue, soreness, and sleep, while increased recovery days were associated with improved soreness scores. Increases in hours travelled and days spent away from home over 10 days were associated with increased sleep quality and duration. Cumulative training load over 3 and 10 days, hours travelled and days away from home city were all associated with changes in CMJ performance during the eccentric phase. The interaction of on-court and travel related stressors combined with individual factors is complex, meaning that multiple athletes response measures are needed to understand fatigue and recovery cycles. Our findings support the utility of the response measures presented (i.e., CMJ and AROMs), but this is not an exhaustive battery and practitioners should consider what measures may best inform training periodization within the context of their environment/sport
Functional Interchangeability of Late Domains, Late Domain Cofactors and Ubiquitin in Viral Budding
The membrane scission event that separates nascent enveloped virions from host cell membranes often requires the ESCRT pathway, which can be engaged through the action of peptide motifs, termed late (L-) domains, in viral proteins. Viral PTAP and YPDL-like L-domains bind directly to the ESCRT-I and ALIX components of the ESCRT pathway, while PPxY motifs bind Nedd4-like, HECT-domain containing, ubiquitin ligases (e.g. WWP1). It has been unclear precisely how ubiquitin ligase recruitment ultimately leads to particle release. Here, using a lysine-free viral Gag protein derived from the prototypic foamy virus (PFV), where attachment of ubiquitin to Gag can be controlled, we show that several different HECT domains can replace the WWP1 HECT domain in chimeric ubiquitin ligases and drive budding. Moreover, artificial recruitment of isolated HECT domains to Gag is sufficient to stimulate budding. Conversely, the HECT domain becomes dispensable if the other domains of WWP1 are directly fused to an ESCRT-1 protein. In each case where budding is driven by a HECT domain, its catalytic activity is essential, but Gag ubiquitination is dispensable, suggesting that ubiquitin ligation to trans-acting proteins drives budding. Paradoxically, however, we also demonstrate that direct fusion of a ubiquitin moiety to the C-terminus of PFV Gag can also promote budding, suggesting that ubiquitination of Gag can substitute for ubiquitination of trans-acting proteins. Depletion of Tsg101 and ALIX inhibits budding that is dependent on ubiquitin that is fused to Gag, or ligated to trans-acting proteins through the action of a PPxY motif. These studies underscore the flexibility in the ways that the ESCRT pathway can be engaged, and suggest a model in which the identity of the protein to which ubiquitin is attached is not critical for subsequent recruitment of ubiquitin-binding components of the ESCRT pathway and viral budding to proceed
Effects of amantadine on circulating neurotransmitters in healthy subjects
Considering that glutamatergic axons innervate the C1(Ad) medullary nuclei, which are responsible for the excitation of the peripheral adrenal glands, we decided to investigate catecholamines (noradrenaline, adrenaline and dopamine) plus indolamines (plasma serotonin and platelet serotonin) at the blood level, before and after a small oral dose of amantadine, a selective NMDA antagonist. We found that the drug provoked a selective enhancement of noradrenaline plus a minimization of adrenaline, dopamine, plasma serotonin and platelet serotonin circulating levels. Significant enhancement of diastolic blood pressure plus reduction of systolic blood pressure and heart rate paralleled the circulating parameter changes. The above findings allow us to postulate that the drug was able to enhance the peripheral neural sympathetic activity. Minimization of both adrenal sympathetic and parasympathetic activities was also registered after the amantadine challenge. The above findings supported the postulation that this drug should be a powerful therapeutic tool for treating diseases affected by adrenal sympathetic hyperactivity
Efficient Production of HIV-1 Virus-Like Particles from a Mammalian Expression Vector Requires the N-Terminal Capsid Domain
It is now well accepted that the structural protein Pr55Gag is sufficient by itself to produce HIV-1 virus-like particles (VLPs). This polyprotein precursor contains different domains including matrix, capsid, SP1, nucleocapsid, SP2 and p6. In the present study, we wanted to determine by mutagenesis which region(s) is essential to the production of VLPs when Pr55Gag is inserted in a mammalian expression vector, which allows studying the protein of interest in the absence of other viral proteins. To do so, we first studied a minimal Pr55Gag sequence called Gag min that was used previously. We found that Gag min fails to produce VLPs when expressed in an expression vector instead of within a molecular clone. This failure occurs early in the cell at the assembly of viral proteins. We then generated a series of deletion and substitution mutants, and examined their ability to produce VLPs by combining biochemical and microscopic approaches. We demonstrate that the matrix region is not necessary, but that the efficiency of VLP production depends strongly on the presence of its basic region. Moreover, the presence of the N-terminal domain of capsid is required for VLP production when Gag is expressed alone. These findings, combined with previous observations indicating that HIV-1 Pr55Gag-derived VLPs act as potent stimulators of innate and acquired immunity, make the use of this strategy worth considering for vaccine development
Sildenafil attenuates pulmonary arterial pressure but does not improve oxygenation during ARDS
OBJECTIVE: Pulmonary hypertension is a characteristic feature of acute respiratory distress syndrome (ARDS) and contributes to mortality. Administration of sildenafil in ambulatory patients with pulmonary hypertension improves oxygenation and ameliorates pulmonary hypertension. Our aim was to determine whether sildenafil is beneficial for patients with ARDS. DESIGN: Prospective, open-label, multicenter, interventional cohort study. SETTING: Medical-surgical ICU of two university hospitals. PATIENTS: Ten consecutive patients meeting the NAECC criteria for ARDS. INTERVENTIONS: A single dose of 50 mg sildenafil citrate administered via a nasogastric tube. MAIN RESULTS: Administration of sildenafil in patients with ARDS decreased mean pulmonary arterial pressure from 25 to 22 mmHg (P = 0.022) and pulmonary artery occlusion pressure from 16 to 13 mmHg (P = 0.049). Systemic mean arterial pressures were markedly decreased from 81 to 75 mmHg (P = 0.005). Sildenafil did not improve pulmonary arterial oxygen tension, but resulted in a further increase in the shunt fraction. CONCLUSION: Although sildenafil reduced pulmonary arterial pressures during ARDS, the increased shunt fraction and decreased arterial oxygenation render it unsuitable for the treatment of patients with ARD
Does neurocognitive training have the potential to improve dietary self-care in type 2 diabetes? Study protocol of a double blind randomised controlled trial
Dietary self-care is a key element of self-management in type 2 diabetes. It is also the most difficult aspect of diabetes self-management. Adhering to long-term dietary goals and resisting immediate food desires requires top-down inhibitory control over subcortical impulsive and emotional responses to food. Practising simple neurocognitive tasks can improve inhibitory control and health behaviours that depend on inhibitory control, such as resisting alcohol consumption. It is yet to be investigated, however, whether neurocognitive training can improve dietary self-care in people with type 2 diabetes. The aim of this randomised controlled trial is to investigate whether web-based neurocognitive training can improve the ability of people with type 2 diabetes to resist tempting foods and better adhere to a healthy dietary regime
Essential Roles of the Tap42-Regulated Protein Phosphatase 2A (PP2A) Family in Wing Imaginal Disc Development of Drosophila melanogaster
Protein ser/thr phosphatase 2A family members (PP2A, PP4, and PP6) are implicated in the control of numerous biological processes, but our understanding of the in vivo function and regulation of these enzymes is limited. In this study, we investigated the role of Tap42, a common regulatory subunit for all three PP2A family members, in the development of Drosophila melanogaster wing imaginal discs. RNAi-mediated silencing of Tap42 using the binary Gal4/UAS system and two disc drivers, pnr- and ap-Gal4, not only decreased survival rates but also hampered the development of wing discs, resulting in a remarkable thorax cleft and defective wings in adults. Silencing of Tap42 also altered multiple signaling pathways (HH, JNK and DPP) and triggered apoptosis in wing imaginal discs. The Tap42RNAi-induced defects were the direct result of loss of regulation of Drosophila PP2A family members (MTS, PP4, and PPV), as enforced expression of wild type Tap42, but not a phosphatase binding defective Tap42 mutant, rescued fly survivorship and defects. The experimental platform described herein identifies crucial roles for Tap42•phosphatase complexes in governing imaginal disc and fly development
Rab7A Is Required for Efficient Production of Infectious HIV-1
Retroviruses take advantage of cellular trafficking machineries to assemble and release new infectious particles. Rab proteins regulate specific steps in intracellular membrane trafficking by recruiting tethering, docking and fusion factors, as well as the actin- and microtubule-based motor proteins that facilitate vesicle traffic. Using virological tests and RNA interference targeting Rab proteins, we demonstrate that the late endosome-associated Rab7A is required for HIV-1 propagation. Analysis of the late steps of the HIV infection cycle shows that Rab7A regulates Env processing, the incorporation of mature Env glycoproteins into viral particles and HIV-1 infectivity. We also show that siRNA-mediated Rab7A depletion induces a BST2/Tetherin phenotype on HIV-1 release. BST2/Tetherin is a restriction factor that impedes HIV-1 release by tethering mature virus particles to the plasma membrane. Our results suggest that Rab7A contributes to the mechanism by which Vpu counteracts the restriction factor BST2/Tetherin and rescues HIV-1 release. Altogether, our results highlight new roles for a major regulator of the late endocytic pathway, Rab7A, in the late stages of the HIV-1 replication cycle
- …