36 research outputs found

    Phase II study of gemcitabine and vindesine in patients with previously untreated non-resectable non-small-cell lung cancer

    Get PDF
    Because both vindesine and gemcitabine are active drugs in advanced non-small-cell lung cancer (NSCLC), with different modes of action and only partly overlapping toxicity, a phase II study was performed. Gemcitabine 1000 mg m−2 was given on days 1, 8 and 15 every 4 weeks, while vindesine 3 mg m−2 was administered weekly for 7 weeks, then every 2 weeks. A total of 42 patients with nonresectable NSCLC were included. The median age of patients was 56 years; 57% were men, 52% had adenocarcinoma, 31% squamous cell carcinoma and 17% had large-cell carcinoma. The performance status ranged from 0 to 2 with 83% in performance status 1. The majority (55%) had stage IV disease, while 40% had stage III B and 5% stage III A disease. WHO grade 3–4 leucopenia occurred in five patients (12%) and 9% had grade 4 neutropenia. Thrombocytopenia grade 3–4 was observed in six patients (15%). There were no septic death or bleeding episodes. One patient had a transient WHO grade 4 increase in bilirubin, and four patients had a decrease in glomerular filtration rate below the normal limit; one of these patients developed a non-reversible renal insufficiency. Ten patients (24%) complained of dyspnoea of uncertain mechanism, possibly involving bronchoconstriction. There were one complete and seven partial responses among 40 assessable patients (20%, 95% confidence limits 9–36%). Median response duration was 31 weeks (range 11–83 weeks) and median survival time 31 weeks (range 2–171 weeks). The current combination of gemcitabine and vindesine does not appear to be promising for further examination because of the toxicity and somewhat disappointing activity. © 1999 Cancer Research Campaig

    A New Crocodylian from the Late Maastrichtian of Spain: Implications for the Initial Radiation of Crocodyloids

    Get PDF
    The earliest crocodylians are known primarily from the Late Cretaceous of North America and Europe. The representatives of Gavialoidea and Alligatoroidea are known in the Late Cretaceous of both continents, yet the biogeographic origins of Crocodyloidea are poorly understood. Up to now, only one representative of this clade has been known from the Late Cretaceous, the basal crocodyloid Prodiplocynodon from the Maastrichtian of North America.The fossil studied is a skull collected from sandstones in the lower part of the Tremp Formation, in Chron C30n, dated at -67.6 to 65.5 Ma (late Maastrichtian), in Arén (Huesca, Spain). It is located in a continuous section that contains the K/P boundary, in which the dinosaur faunas closest to the K/P boundary in Europe have been described, including Arenysaurus ardevoli and Blasisaurus canudoi. Phylogenetic analysis places the new taxon, Arenysuchus gascabadiolorum, at the base of Crocodyloidea.The new taxon is the oldest crocodyloid representative in Eurasia. Crocodyloidea had previously only been known from the Palaeogene onwards in this part of Laurasia. Phylogenetically, Arenysuchus gascabadiolorum is situated at the base of the first radiation of crocodyloids that occurred in the late Maastrichtian, shedding light on this part of the cladogram. The presence of basal crocodyloids at the end of the Cretaceous both in North America and Europe provides new evidence of the faunal exchange via the Thulean Land Bridge during the Maastrichtian

    Impedance spectroscopy studies of poly (methyl methacrylate)-lithium salts polymer electrolyte systems

    No full text
    In the present work, five systems of samples have been prepared by the solution casting technique. These are the plasticized poly(methyl methacrylate) (PMMA-EC) system, the LiCF3SO3 salted-poly(methyl methacrylate) (PMMA-LiCF3SO3) system, the LiBF4 salted-poly(methyl methacrylate) (PMMA-LiBF4) System, the LiCF3SO3 salted-poly(methyl methacrylate) containing a fixed amount of plasticizer ([PMMA-EC]-LiCF3SO3) system, and the LiBF4 salted-poly(methyl methacrylate) containing a fixed amount of plasticizer ([PMMA-EC]LiBF4) system. The conductivities of the films from each system are characterized by impedance spectroscopy. The room temperature conductivity in the pure PMMA sample and (PMMA-EC system is 8.57x 10(-13) and 2.71 x 10(-11) S cm respectively. The room conductivity for the highest conducting sample in the (PNINIA-LiCF3SO3), (PMMA-LiBF4), ([PMMA-EC]-LiCF(3)SO3 and ([PMMA-EC]LiBF4) systems is 3.97 x 10(-6), 3.66 x 10(-7), 3.40 x 10(-5), and 4.07 x 10(-7) S cm(-1), respectively. The increase in conductivity is due to the increase in number of mobile ions, and decrease in conductivity is attributed to ion association. The increase and decrease in the number of ions can be implied from the dielectric constant, epsilon(r)-frequency plots. The conductivity-temperature studies are carried out in the temperature range between 303 and 373 K. The results show that the conductivity is increased when the temperature is increased and obeys Arrhenius rule. The plots of loss tangent against temperature at a fixed frequency have showed a peak at 333 K for the ([PMMA-EC]-LiBF4) system and a peak at 363 K for the ([PMM-EC]-LiCF3SO3) system. This peak could be attributed to P-relaxation, as the measurements were not carried out up to glass transition temperature, Tg. It may be inferred that the plasticizer EC has dissociated more LiCF3SO3 than LiBF4 and shifted the loss tangent peak to a higher temperature
    corecore