63 research outputs found

    Selection and Validation of Reference Genes for Quantitative Real-Time PCR in Buckwheat (Fagopyrum esculentum) Based on Transcriptome Sequence Data

    Get PDF
    Quantitative reverse transcription PCR (qRT-PCR) is one of the most precise and widely used methods of gene expression analysis. A necessary prerequisite of exact and reliable data is the accurate choice of reference genes. We studied the expression stability of potential reference genes in common buckwheat (Fagopyrum esculentum) in order to find the optimal reference for gene expression analysis in this economically important crop. Recently sequenced buckwheat floral transcriptome was used as source of sequence information. Expression stability of eight candidate reference genes was assessed in different plant structures (leaves and inflorescences at two stages of development and fruits). These genes are the orthologs of Arabidopsis genes identified as stable in a genome-wide survey gene of expression stability and a traditionally used housekeeping gene GAPDH. Three software applications – geNorm, NormFinder and BestKeeper - were used to estimate expression stability and provided congruent results. The orthologs of AT4G33380 (expressed protein of unknown function, Expressed1), AT2G28390 (SAND family protein, SAND) and AT5G46630 (clathrin adapter complex subunit family protein, CACS) are revealed as the most stable. We recommend using the combination of Expressed1, SAND and CACS for the normalization of gene expression data in studies on buckwheat using qRT-PCR. These genes are listed among five the most stably expressed in Arabidopsis that emphasizes utility of the studies on model plants as a framework for other species

    Relevance of BCAR4 in tamoxifen resistance and tumour aggressiveness of human breast cancer

    Get PDF
    Background:Breast cancer anti-oestrogen resistance 4 (BCAR4) was identified in a search for genes involved in anti-oestrogen resistance in breast cancer. We explored whether BCAR4 is predictive for tamoxifen resistance and prognostic for tumour aggressiveness, and studied its function.Methods:BCAR4 mRNA levels were measured in primary breast tumours, and evaluated for association with progression-free survival (PFS) and clinical benefit in patients with oestrogen receptor (ERα)-positive tumours receiving tamoxifen as first-line monotherapy for advanced disease. In a separate cohort of patients with lymph node-negative, ERα-positive cancer, and not receiving systemic adjuvant therapy, BCAR4 levels were evaluated for association with distant metastasis-free survival (MFS). The function of BCAR4 was studied with immunoblotting and RNA interference in a cell model.Results:Multivariate analyses established high BCAR4 mRNA levels as an independent predictive factor for poor PFS after start of tamoxifen therapy for recurrent disease. High BCAR4 mRNA levels were associated with poor MFS and overall survival, reflecting tumour aggressiveness. In BCAR4-expressing cells, phosphorylation of v-erb-b2 erythroblastic leukaemia viral oncogene homolog (ERBB)2, ERBB3, and their downstream mediators extracellular signal-regulated kinase 1/2 and v-akt murine thymoma viral oncogene homolog (AKT) 1/2, was increased. Selective knockdown of ERBB2 or ERBB3 inhibited proliferation, confirming their role in BCAR4-induced tamoxifen resistance.Conclusion:BCAR4 may have clinical relevance for tumour aggressiveness and tamoxifen resistance. Our cell model suggests that BCAR4-positive breast tumours are driven by ERBB2/ERBB3 signalling. Patients with such tumours may benefit from ERBB-targeted therapy

    Hippocampus specific iron deficiency alters competition and cooperation between developing memory systems

    Get PDF
    Iron deficiency (ID) is the most common gestational micronutrient deficiency in the world, targets the fetal hippocampus and striatum and results in long-term behavioral abnormalities. These structures primarily mediate spatial and procedural memory, respectively, in the rodent but have interconnections that result in competition or cooperation during cognitive tasks. We determined whether ID-induced impairment of one alters the function of the other by genetically inducing a 40% reduction of hippocampus iron content in late fetal life in mice and measuring dorsal striatal gene expression and metabolism and the behavioral balance between the two memory systems in adulthood. Slc11a2hipp/hipp mice had similar striatum iron content, but 18% lower glucose and 44% lower lactate levels, a 30% higher phosphocreatine:creatine ratio, and reduced iron transporter gene expression compared to wild type (WT) littermates, implying reduced striatal metabolic function. Slc11a2hipp/hipp mice had longer mean escape times on a cued task paradigm implying impaired procedural memory. Nevertheless, when hippocampal and striatal memory systems were placed in competition using a Morris Water Maze task that alternates spatial navigation and visual cued responses during training, and forces a choice between hippocampal and striatal strategies during probe trials, Slc11a2hipp/hipp mice used the hippocampus-dependent response less often (25%) and the visual cued response more often (75%) compared to WT littermates that used both strategies approximately equally. Hippocampal ID not only reduces spatial recognition memory performance but also affects systems that support procedural memory, suggesting an altered balance between memory systems

    Identification of germline alterations of the mad homology 2 domain of SMAD3 and SMAD4 from the Ontario site of the breast cancer family registry (CFR)

    Get PDF
    Abstract Introduction A common feature of neoplastic cells is that mutations in SMADs can contribute to the loss of sensitivity to the anti-tumor effects of transforming growth factor-β (TGF-β). However, germline mutation analysis of SMAD3 and SMAD4, the principle substrates of the TGF-β signaling pathway, has not yet been conducted in breast cancer. Thus, it is currently unknown whether germline SMAD3 and SMAD4 mutations are involved in breast cancer predisposition. Methods We performed mutation analysis of the highly conserved mad-homology 2 (MH2) domains for both genes in genomic DNA from 408 non-BRCA1/BRCA2 breast cancer cases and 710 population controls recruited by the Ontario site of the breast cancer family registry (CFR) using denaturing high-performance liquid chromatography (DHPLC) and direct DNA sequencing. The results were interpreted in several ways. First, we adapted nucleotide diversity analysis to quantitatively assess whether the frequency of alterations differ between the two genes. Next, in silico tools were used to predict variants' effect on domain function and mRNA splicing. Finally, 37 cases or controls harboring alterations were tested for aberrant splicing using reverse-transcription polymerase chain reaction (PCR) and real-time PCR statistical comparison of germline expressions by non-parametric Mann-Whitney test of independent samples. Results We identified 27 variants including 2 novel SMAD4 coding variants c.1350G > A (p.Gln450Gln), and c.1701A > G (p.Ile525Val). There were no inactivating mutations even though c.1350G > A was predicted to affect exonic splicing enhancers. However, several additional findings were of note: 1) nucleotide diversity estimate for SMAD3 but not SMAD4 indicated that coding variants of the MH2 domain were more infrequent than expected; 2) in breast cancer cases SMAD3 was significantly over-expressed relative to controls (P A was associated with elevated germline expression (> 5-fold); 3) separate analysis using tissue expression data showed statistically significant over-expression of SMAD3 and SMAD4 in breast carcinomas. Conclusions This study shows that inactivating germline alterations in SMAD3 and SMAD4 are rare, suggesting a limited role in driving tumorigenesis. Nevertheless, aberrant germline expressions of SMAD3 and SMAD4 may be more common in breast cancer than previously suspected and offer novel insight into their roles in predisposition and/or progression of breast cancer

    CITED2 and NCOR2 in anti-oestrogen resistance and progression of breast cancer

    Get PDF
    Background:Endocrine therapies of breast cancer are effective but ultimately fail because of the development of treatment resistance. We have previously revealed several genes leading to tamoxifen resistance in vitro by retroviral insertion mutagenesis. To understand the manner in which these genes yield tamoxifen resistance, their effects on global gene expression were studied and those genes resulting in a distinct gene expression profile were further investigated for their clinical relevance.Methods:Gene expression profiles of 69 human breast cancer cell lines that were made tamoxifen resistant through retroviral insertion mutagenesis were obtained using oligonucleotide arrays and analysed with bioinformatic tools. mRNA levels of NCOR2 and CITED2 in oestrogen receptor-positive breast tumours were determined by quantitative RT-PCR. mRNA levels were evaluated for association with metastasis-free survival (MFS) in 620 patients with lymph node-negative primary breast cancer who did not receive systemic adjuvant therapy, and with clinical benefit in 296 patients receiving tamoxifen therapy for recurrent breast cancer.Results:mRNA expression profiles of most tamoxifen-resistant cell lines were strikingly similar, except for the subgroups of cell lines in which NCOR2 or CITED2 were targeted by the retrovirus. Both NCOR2 and CITED2 mRNA levels were associated with MFS, that is, tumour aggressiveness, independently of traditional prognostic factors. In addition, high CITED2 mRNA levels were predictive for a clinical benefit from first-line tamoxifen treatment in patients with advanced disease.Conclusions: Most retrovirally targeted genes yielding tamoxifen resistance in our cell lines do not impose a distinctive expressi

    Gene Expression Profiles of the NCI-60 Human Tumor Cell Lines Define Molecular Interaction Networks Governing Cell Migration Processes

    Get PDF
    Although there is extensive information on gene expression and molecular interactions in various cell types, integrating those data in a functionally coherent manner remains challenging. This study explores the premise that genes whose expression at the mRNA level is correlated over diverse cell lines are likely to function together in a network of molecular interactions. We previously derived expression-correlated gene clusters from the database of the NCI-60 human tumor cell lines and associated each cluster with function categories of the Gene Ontology (GO) database. From a cluster rich in genes associated with GO categories related to cell migration, we extracted 15 genes that were highly cross-correlated; prominent among them were RRAS, AXL, ADAM9, FN14, and integrin-beta1. We then used those 15 genes as bait to identify other correlated genes in the NCI-60 database. A survey of current literature disclosed, not only that many of the expression-correlated genes engaged in molecular interactions related to migration, invasion, and metastasis, but that highly cross-correlated subsets of those genes engaged in specific cell migration processes. We assembled this information in molecular interaction maps (MIMs) that depict networks governing 3 cell migration processes: degradation of extracellular matrix, production of transient focal complexes at the leading edge of the cell, and retraction of the rear part of the cell. Also depicted are interactions controlling the release and effects of calcium ions, which may regulate migration in a spaciotemporal manner in the cell. The MIMs and associated text comprise a detailed and integrated summary of what is currently known or surmised about the role of the expression cross-correlated genes in molecular networks governing those processes

    Examining the role of genetic risk and longitudinal transmission processes underlying maternal parenting and psychopathology and children’s ADHD symptoms and aggression: utilizing the advantages of a prospective adoption design

    Get PDF
    Although genetic factors may contribute to initial liability for ADHD onset, there is growing evidence of the potential importance of the rearing environment on the developmental course of ADHD symptomatology. However, associations between family-level variables (maternal hostility, maternal depressive symptoms) and child behaviors (developmental course of ADHD and aggression) may be explained by genes that are shared by biologically related parents and children. Furthermore, ADHD symptoms and aggression commonly co-occur: it is important to consider both simultaneously to have a better understanding of processes underlying the developmental course of ADHD and aggression. To addresses these issues, we employed a longitudinal genetically sensitive parent–offspring adoption design. Analyses were conducted using Cohort I (n = 340) of the Early Growth and Development Study with cross-validation analyses conducted with Cohort II (n = 178). Adoptive mother hostility, but not depression, was associated with later child ADHD symptoms and aggression. Mothers and their adopted children were genetically unrelated, removing passive rGE as a possible explanation. Early child impulsivity/activation was associated with later ADHD symptoms and aggression. Child impulsivity/activation was also associated with maternal hostility, with some evidence for evocative gene-environment correlation processes on adoptive mother depressive symptoms. This study provides novel insights into family-based environmental influences on child ADHD and aggression symptoms, independent of shared parental genetic factors, implications of which are further explicated in the discussion

    CFD Applications of Newton’s Method on Supercomputers

    No full text
    • …
    corecore