14 research outputs found

    Disruption of Lateral Efferent Pathways: Functional Changes in Auditory Evoked Responses

    Full text link
    The functional consequences of selectively lesioning the lateral olivocochlear efferent system in guinea pigs were studied. The lateral superior olive (LSO) contains the cell bodies of lateral olivocochlear neurons. Melittin, a cytotoxic chemical, was injected into the brain stem using stereotaxic coordinates and near-field evoked potentials to target the LSO. Brain stem histology revealed discrete damage to the LSO following the injections. Functional consequences of this damage were reflected in depressed amplitude of the compound action potential of the eighth nerve (CAP) following the lesion. Threshold sensitivity and N1 latencies were relatively unchanged. Onset adaptation of the cubic distortion product otoacoustic emission (DPOAE) was evident, suggesting a reasonably intact medial efferent system. The present results provide the first report of functional changes induced by isolated manipulation of the lateral efferent pathway. They also confirm the suggestion that changes in single-unit auditory nerve activity after cutting the olivocochlear bundle are probably a consequence of disrupting the more lateral of the two olivocochlear efferent pathways.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41379/1/10162_2002_Article_3018.pd

    Transient Expression of Acetylcholinesterase in the Posterior Ventral Cochlear Nucleus of Rat Brain

    No full text
    In this report we partially characterize a pathway projecting to the posterior ventral cochlear nucleus (PVCN) of the rat brain that transiently expresses a high level of acetylcholinesterase (AChE). The AChE-positive axons form a network that envelops a discrete region of the PVCN that includes the octopus cell region and some cells rostral to it. AChE is first detectable by postnatal day 3 (P3), peaks in expression at about P7–10, and is barely detectable in our preparations by P15. We previously reported that neurons in the octopus cell region express high levels of α7 nAChR mRNA and α-bungarotoxin binding during the same time period. In light microscopic immunocytochemical studies using antibodies to the vesicular acetylcholine transporter (VAChT), we could not identify immunopositive boutons in the developing regions of the PVCN that express high levels of AChE-positive fibers despite distinct punctate labeling in other brain regions. Systematic electron microscopic examination of AChE histochemical staining throughout the PVCN revealed intense labeling of axons, but synaptic sites were devoid of reaction product. The source of the AChE-positive fibers is not known, but the fibers are not auditory nerve axons and probably not collaterals of the olivocochlear bundle

    Topography of Auditory Nerve Projections to the Cochlear Nucleus in Cats after Neonatal Deafness and Electrical Stimulation by a Cochlear Implant

    No full text
    We previously reported that auditory nerve projections from the cochlear spiral ganglion (SG) to the cochlear nucleus (CN) exhibit clear cochleotopic organization in adult cats deafened as neonates before hearing onset. However, the topographic specificity of these CN projections in deafened animals is proportionately broader than normal (less precise relative to the CN frequency gradient). This study examined SG-to-CN projections in adult cats that were deafened as neonates and received a unilateral cochlear implant at ∼7 weeks of age. Following several months of electrical stimulation, SG projections from the stimulated cochleae were compared to projections from contralateral, non-implanted ears. The fundamental organization of SG projections into frequency band laminae was clearly evident, and discrete projections were always observed following double SG injections in deafened cochleae, despite severe auditory deprivation and/or broad electrical activation of the SG. However, when normalized for the smaller CN size after deafness, AVCN, PVCN, and DCN projections on the stimulated side were broader by 32%, 34%, and 53%, respectively, than projections in normal animals (although absolute projection widths were comparable to normal). Further, there was no significant difference between projections from stimulated and contralateral non-implanted cochleae. These findings suggest that early normal auditory experience may be essential for normal development and/or maintenance of the topographic precision of SG-to-CN projections. After early deafness, the CN is smaller than normal, the topographic distribution of these neural projections that underlie frequency resolution in the central auditory system is proportionately broader, and projections from adjacent SG sectors are more overlapping. Several months of stimulation by a cochlear implant (beginning at ∼7 weeks of age) did not lessen or exacerbate these degenerative changes observed in adulthood. One clinical implication of these findings is that congenitally deaf cochlear implant recipients may have central auditory system alterations that limit their ability to achieve spectral selectivity equivalent to post-lingually deafened subjects

    Calcium and Neuronal Development and Growth

    No full text
    corecore