5 research outputs found

    Dengue Virus Inhibits Immune Responses in Aedes aegypti Cells

    Get PDF
    The ability of many viruses to manipulate the host antiviral immune response often results in complex host-pathogen interactions. In order to study the interaction of dengue virus (DENV) with the Aedes aegypti immune response, we have characterized the DENV infection-responsive transcriptome of the immune-competent A. aegypti cell line Aag2. As in mosquitoes, DENV infection transcriptionally activated the cell line Toll pathway and a variety of cellular physiological systems. Most notably, however, DENV infection down-regulated the expression levels of numerous immune signaling molecules and antimicrobial peptides (AMPs). Functional assays showed that transcriptional induction of AMPs from the Toll and IMD pathways in response to bacterial challenge is impaired in DENV-infected cells. In addition, Escherichia coli, a Gram-negative bacteria species, grew better when co-cultured with DENV-infected cells than with uninfected cells, suggesting a decreased production of AMPs from the IMD pathway in virus-infected cells. Pre-stimulation of the cell line with Gram-positive bacteria prior to DENV infection had no effect on DENV titers, while pre-stimulation with Gram-negative bacteria resulted in an increase in DENV titers. These results indicate that DENV is capable of actively suppressing immune responses in the cells it infects, a phenomenon that may have important consequences for virus transmission and insect physiology

    RIG-I, MDA5 and TLR3 Synergistically Play an Important Role in Restriction of Dengue Virus Infection

    Get PDF
    Dengue virus (DV) infection is one of the most common mosquito-borne viral diseases in the world. The innate immune system is important for the early detection of virus and for mounting a cascade of defense measures which include the production of type 1 interferon (IFN). Hence, a thorough understanding of the innate immune response during DV infection would be essential for our understanding of the DV pathogenesis. A recent application of the microarray to dengue virus type 1 (DV1) infected lung carcinoma cells revealed the increased expression of both extracellular and cytoplasmic pattern recognition receptors; retinoic acid inducible gene-I (RIG-I), melanoma differentiation associated gene-5 (MDA-5) and Toll-like receptor-3 (TLR3). These intracellular RNA sensors were previously reported to sense DV infection in different cells. In this study, we show that they are collectively involved in initiating an effective IFN production against DV. Cells silenced for these genes were highly susceptible to DV infection. RIG-I and MDA5 knockdown HUH-7 cells and TLR3 knockout macrophages were highly susceptible to DV infection. When cells were silenced for only RIG-I and MDA5 (but not TLR3), substantial production of IFN-β was observed upon virus infection and vice versa. High susceptibility to virus infection led to ER-stress induced apoptosis in HUH-7 cells. Collectively, our studies demonstrate that the intracellular RNA virus sensors (RIG-I, MDA5 and TLR3) are activated upon DV infection and are essential for host defense against the virus

    Mapping Protein Interactions between Dengue Virus and Its Human and Insect Hosts

    Get PDF
    Dengue virus (DENV) represents a major disease burden in tropical and subtropical regions of the world, and has shown an increase in the number of cases in recent years. DENV is transmitted to humans through the bite of an infected mosquito, typically Aedes aegypti, after which it begins the infection and replication lifecycle within human cells. To perform the molecular functions required for invasion, replication, and spread of the virus, proteins encoded by DENV must interact with and alter the behavior of protein networks in both of these hosts. In this work, we used a computational method based on protein structures to predict interactions between DENV and its human and insect hosts. We predict numerous interactions, with many involved in known cell death, stress, and immune system pathways. Further investigation of these predicted protein-protein interactions should provide targets to combat the clinical manifestations of this disease in humans as well as points of intervention focused within the mosquito vector
    corecore