66 research outputs found

    GAS6 Enhances Repair Following Cuprizone-Induced Demyelination

    Get PDF
    Growth arrest-specific protein 6 (gas6) activities are mediated through the Tyro3, Axl, and Mer family of receptor tyrosine kinases. Gas6 is expressed and secreted by a wide variety of cell types, including cells of the central nervous system (CNS). In this study, we tested the hypothesis that administration of recombinant human Gas6 (rhGas6) protein into the CNS improves recovery following cuprizone withdrawal. After a 4-week cuprizone diet, cuprizone was removed and PBS or rhGas6 (400 ng/ml, 4 µg/ml and 40 µg/ml) was delivered by osmotic mini-pump into the corpus callosum of C57Bl6 mice for 14 days. Nine of 11 (82%) PBS-treated mice had abundant lipid-associated debris in the corpus callosum by Oil-Red-O staining while only 4 of 19 (21%) mice treated with rhGas6 had low Oil-Red-O positive droplets. In rhGas6-treated mice, SMI32-positive axonal spheroids and APP-positive deposits were reduced in number relative to PBS-treated mice. Compared to PBS, rhGas6 enhanced remyelination as revealed by MBP immunostaining and electron microscopy. The rhGas6-treated mice had more oligodendrocytes expressing Olig1 in the cytoplasm, indicative of oligodendrocyte progenitor cell maturation. Relative to PBS-treated mice, rhGas6-treated mice had fewer activated microglia in the corpus callosum by Iba1 immunostaining. The data show that rhGas6 treatment resulted in more efficient repair following cuprizone-induced injury

    Impact of today's media on university student's body image in Pakistan: a conservative, developing country's perspective

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Living in a world greatly controlled by mass media makes it impossible to escape its pervading influence. As media in Pakistan has been free in the true sense of the word for only a few years, its impact on individuals is yet to be assessed. Our study aims to be the first to look at the effect media has on the body image of university students in a conservative, developing country like Pakistan. Also, we introduced the novel concept of body image dissatisfaction as being both negative and positive.</p> <p>Methods</p> <p>A cross-sectional study was conducted among 7 private universities over a period of two weeks in the city of Karachi, Pakistan's largest and most populous city. Convenience sampling was used to select both male and female undergraduate students aged between 18 and 25 and a sample size of 783 was calculated.</p> <p>Results</p> <p>Of the 784 final respondents, 376 (48%) were males and 408 (52%) females. The mean age of males was 20.77 (+/- 1.85) years and females was 20.38 (+/- 1.63) years. Out of these, 358 (45.6%) respondents had a positive BID (body image dissatisfaction) score while 426 (54.4%) had a negative BID score. Of the respondents who had positive BID scores, 93 (24.7%) were male and 265 (65.0%) were female. Of the respondents with a negative BID score, 283 (75.3%) were male and 143 (35.0%) were female. The results for BID vs. media exposure were similar in both high and low peer pressure groups. Low media exposure meant positive BID scores and vice versa in both groups (p < 0.0001) showing a statistically significant association between high media exposure and negative body image dissatisfaction. Finally, we looked at the association between gender and image dissatisfaction. Again a statistically significant association was found between positive body image dissatisfaction and female gender and negative body image dissatisfaction and male gender (p < 0.0001).</p> <p>Conclusions</p> <p>Our study confirmed the tendency of the media to have an overall negative effect on individuals' body image. A striking feature of our study, however, was the finding that negative body image dissatisfaction was found to be more prevalent in males as compared to females. Likewise, positive BID scores were more prevalent amongst females.</p

    Postsynaptic nigrostriatal dopamine receptors and their role in movement regulation

    Get PDF
    The article presents the hypothesis that nigrostriatal dopamine may regulate movement by modulation of tone and contraction in skeletal muscles through a concentration-dependent influence on the postsynaptic D1 and D2 receptors on the follow manner: nigrostriatal axons innervate both receptor types within the striatal locus somatotopically responsible for motor control in agonist/antagonist muscle pair around a given joint. D1 receptors interact with lower and D2 receptors with higher dopamine concentrations. Synaptic dopamine concentration increases immediately before movement starts. We hypothesize that increasing dopamine concentrations stimulate first the D1 receptors and reduce muscle tone in the antagonist muscle and than stimulate D2 receptors and induce contraction in the agonist muscle. The preceded muscle tone reduction in the antagonist muscle eases the efficient contraction of the agonist. Our hypothesis is applicable for an explanation of physiological movement regulation, different forms of movement pathology and therapeutic drug effects. Further, this hypothesis provides a theoretical basis for experimental investigation of dopaminergic motor control and development of new strategies for treatment of movement disorders

    Methamphetamine-Associated Psychosis

    Full text link
    corecore