9 research outputs found

    Large-scale optimization with the primal-dual column generation method

    Get PDF
    The primal-dual column generation method (PDCGM) is a general-purpose column generation technique that relies on the primal-dual interior point method to solve the restricted master problems. The use of this interior point method variant allows to obtain suboptimal and well-centered dual solutions which naturally stabilizes the column generation. As recently presented in the literature, reductions in the number of calls to the oracle and in the CPU times are typically observed when compared to the standard column generation, which relies on extreme optimal dual solutions. However, these results are based on relatively small problems obtained from linear relaxations of combinatorial applications. In this paper, we investigate the behaviour of the PDCGM in a broader context, namely when solving large-scale convex optimization problems. We have selected applications that arise in important real-life contexts such as data analysis (multiple kernel learning problem), decision-making under uncertainty (two-stage stochastic programming problems) and telecommunication and transportation networks (multicommodity network flow problem). In the numerical experiments, we use publicly available benchmark instances to compare the performance of the PDCGM against recent results for different methods presented in the literature, which were the best available results to date. The analysis of these results suggests that the PDCGM offers an attractive alternative over specialized methods since it remains competitive in terms of number of iterations and CPU times even for large-scale optimization problems.Comment: 28 pages, 1 figure, minor revision, scaled CPU time

    Mixed-Integer Linear Optimization: Primal–Dual Relations and Dual Subgradient and Cutting-Plane Methods

    No full text
    This chapter presents several solution methodologies for mixed-integer linear optimization, stated as mixed-binary optimization problems, by means of Lagrangian duals, subgradient optimization, cutting-planes, and recovery of primal solutions. It covers Lagrangian duality theory for mixed-binary linear optimization, a problem framework for which ultimate success—in most cases—is hard to accomplish, since strong duality cannot be inferred. First, a simple conditional subgradient optimization method for solving the dual problem is presented. Then, we show how ergodic sequences of Lagrangian subproblem solutions can be computed and used to recover mixed-binary primal solutions. We establish that the ergodic sequences accumulate at solutions to a convexified version of the original mixed-binary optimization problem. We also present a cutting-plane approach to the Lagrangian dual, which amounts to solving the convexified problem by Dantzig–Wolfe decomposition, as well as a two-phase method that benefits from the advantages of both subgradient optimization and Dantzig–Wolfe decomposition. Finally, we describe how the Lagrangian dual approach can be used to find near optimal solutions to mixed-binary optimization problems by utilizing the ergodic sequences in a Lagrangian heuristic, to construct a core problem, as well as to guide the branching in a branch-and-bound method. The chapter is concluded with a section comprising notes, references, historical downturns, and reading tips

    Standard Bundle Methods: Untrusted Models and Duality

    No full text
    We review the basic ideas underlying the vast family of algorithms for nonsmooth convex optimization known as "bundle methods". In a nutshell, these approaches are based on constructing models of the function, but lack of continuity of first-order information implies that these models cannot be trusted, not even close to an optimum. Therefore, many different forms of stabilization have been proposed to try to avoid being led to areas where the model is so inaccurate as to result in almost useless steps. In the development of these methods, duality arguments are useful, if not outright necessary, to better analyze the behaviour of the algorithms. Also, in many relevant applications the function at hand is itself a dual one, so that duality allows to map back algorithmic concepts and results into a "primal space" where they can be exploited; in turn, structure in that space can be exploited to improve the algorithms' behaviour, e.g. by developing better models. We present an updated picture of the many developments around the basic idea along at least three different axes: form of the stabilization, form of the model, and approximate evaluation of the function
    corecore