85 research outputs found

    Nasal continuous positive airway pressure improves myocardial perfusion reserve and endothelial-dependent vasodilation in patients with obstructive sleep apnea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obstructive sleep apnea (OSA) has been associated with cardiovascular disease (CVD), but whether OSA is an independent risk factor for CVD is controversial. The purpose of this study is to determine if patients with OSA have subclinical cardiovascular disease that is detectable by multi-modality cardiovascular imaging and whether these abnormalities improve after nasal continuous positive airway pressure (nCPAP).</p> <p>Results</p> <p>Of the 35 consecutive subjects with newly diagnosed moderate to severe OSA recruited from the Stanford Sleep Disorders Clinic, 20 patients were randomized to active vs. sham nCPAP. Active nCPAP was titrated to pressures that would prevent sleep disordered breathing based on inpatient polysomnography. OSA patients had baseline vascular function abnormalities including decreased myocardial perfusion reserve (MPR), brachial flow mediated dilation (FMD) and nitroglycerin-induced coronary vasodilation. Patients randomized to active nCPAP had improvement of MPR (1.5 ± 0.5 vs. 3.0 ± 1.3, p = 0.02) and brachial FMD (2.5% ± 5.7% vs. 9.0% ± 6.5%, p = 0.03) after treatment, but those randomized to sham nCPAP showed no significant improvement. There were no significant changes seen in chamber sizes, systolic and diastolic function, valvular function and coronary vasodilation to nitroglycerin.</p> <p>Conclusions</p> <p>Patients with moderate to severe OSA had decreased MPR and brachial FMD that improved after 3 months of nCPAP. These findings suggest that relief of apnea in OSA may improve microvascular disease and endothelial dysfunction, which may prevent the development of overt cardiovascular disease. Further study in a larger patient population may be warranted.</p

    Surfactants: their role in preventing the precipitation of proteins by tannins in insect guts

    Full text link
    Much more tannic acid or pin oak tannin is required to precipitate the abundant leaf protein, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPC), from Manduca sexta gut fluid adjusted to pH 6.5 than is required to precipitate this protein from an aqueous buffer at the same pH. This finding demonstrates that some characteristic of M. sexta gut fluid, in addition to its basicity, counteracts the potential of tannins to precipitate ingested proteins. Gut fluid of M. sexta has a surface tension of 36–39 dynes/cm, indicating the presence of surfactants. Lysolecithin and linoleoylglycine, surfactants known to be present in insect gut fluids, also interfere with the precipitation of RuBPC by tannins at pH 6.5. It is concluded that detergency is a widespread property of insect gut fluids that counteracts the potential of tannins to precipitate die ary proteins, and it is argued that there is no longer any justification for continuing to refer to tannins as digestibility-reducing-substances. Finding that there has been no formidable barrier to the evolution of mechanisms that counter a generalized antidigestive action by tannins is difficult to reconcile with the idea that reduced digestibility is an evolved anti-herbivore adaptation of apparent plants.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47751/1/442_2004_Article_BF00379632.pd

    Relationship between ventilatory function and age in master athletes and a sedentary reference population

    Get PDF
    Abstract Ageing is accompanied with a decline in respiratory function. It is hypothesised that this may be attenuated by high physical activity levels. We performed spirometry in master athletes (71 women; 84 men; 35–86 years) and sedentary people (39 women; 45 men; 24–82 years), and calculated the predicted lung age (PLA). The negative associations of age with forced expiratory volume in 1 s (FEV1; 34 mL·year−1) and other ventilatory parameters were similar in controls and master athletes. FEV1pred was 9 % higher (P<0.005) and PLA 15 % lower (P00.013) in athletes than controls. There were no significant differences between endurance and power athletes and sedentary people in maximal inspiratory and expiratory pressure. Neither age-graded performance nor weekly training hours were significantly related to lung age. Life-long exercise does not appear to attenuate the age-related decrease in ventilatory function. The better respiratory function in master athletes than age-matched sedentary people might be due to self-selection and attrition bias
    • …
    corecore