78 research outputs found

    Clinical factors associated with a conservative gait pattern in older male veterans with diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with diabetes and peripheral neuropathy are at higher risk for falls. People with diabetes sometimes adopt a more conservative gait pattern with decreased walking speed, widened base, and increased double support time. The purpose of this study was to use a multivariate approach to describe this conservative gait pattern.</p> <p>Methods</p> <p>Male veterans (mean age = 67 years; SD = 9.8; range 37–86) with diabetes (n = 152) participated in this study from July 2000 to May 2001 at the Veterans Affairs Medical Center, White River Junction, VT. Various demographic, clinical, static mobility, and plantar pressure measures were collected. Conservative gait pattern was defined by visual gait analysis as failure to demonstrate a heel-to-toe gait during the propulsive phase of gait.</p> <p>Results</p> <p>Patients with the conservative gait pattern had lower walking speed and decreased stride length compared to normal gait. (0.68 m/s v. 0.91 m/s, <it>p </it>< 0.001; 1.04 m v. 1.24 m, <it>p </it>< 0.001) Age, monofilament insensitivity, and Romberg's sign were significantly higher; and ankle dorsiflexion was significantly lower in the conservative gait pattern group. In the multivariate analysis, walking speed, age, ankle dorsiflexion, and callus were retained in the final model describing 36% of the variance. With the inclusion of ankle dorsiflexion in the model, monofilament insensitivity was no longer an independent predictor.</p> <p>Conclusion</p> <p>Our multivariate investigation of conservative gait in diabetes patients suggests that walking speed, advanced age, limited ankle dorsiflexion, and callus describe this condition more so than clinical measures of neuropathy.</p

    A Conserved Behavioral State Barrier Impedes Transitions between Anesthetic-Induced Unconsciousness and Wakefulness: Evidence for Neural Inertia

    Get PDF
    One major unanswered question in neuroscience is how the brain transitions between conscious and unconscious states. General anesthetics offer a controllable means to study these transitions. Induction of anesthesia is commonly attributed to drug-induced global modulation of neuronal function, while emergence from anesthesia has been thought to occur passively, paralleling elimination of the anesthetic from its sites in the central nervous system (CNS). If this were true, then CNS anesthetic concentrations on induction and emergence would be indistinguishable. By generating anesthetic dose-response data in both insects and mammals, we demonstrate that the forward and reverse paths through which anesthetic-induced unconsciousness arises and dissipates are not identical. Instead they exhibit hysteresis that is not fully explained by pharmacokinetics as previously thought. Single gene mutations that affect sleep-wake states are shown to collapse or widen anesthetic hysteresis without obvious confounding effects on volatile anesthetic uptake, distribution, or metabolism. We propose a fundamental and biologically conserved concept of neural inertia, a tendency of the CNS to resist behavioral state transitions between conscious and unconscious states. We demonstrate that such a barrier separates wakeful and anesthetized states for multiple anesthetics in both flies and mice, and argue that it contributes to the hysteresis observed when the brain transitions between conscious and unconscious states

    Is proximal airway pressure a good reflection of peripheral airspace pressure in infants and children models under HFJV?

    No full text
    This experimental study was carried out to determine if an alveolar positive end-expiratory pressure (PEEP) could occur during high frequency jet ventilation (HFJV) in infants, and if tracheal pressure is a good estimation of alveolar pressure. We used physical models simulating a 1.5 kg premature (P), a 3 kg newborn (N) and a 6 kg child (C) with normal compliance and normal resistance. Moreover, in the N model, we used two different resistances and lung compliance heterogeneity was studied in the P model. Pressure was measured simultaneously in the tube simulating trachea (Paw) and in the bottle simulating the lung (Palv). HFJV was performed either via an endotracheal tube (ETT) or via a long catheter as in laryngoscopy. The ratio of injection time upon cycle duration (Ti/Ttot) was 20% or 30%, jet frequency was altered from 150 to 300 min-1 and the driving pressure was set as in clinical practice (0.5 and 0.6 bar). PEEP occurred mainly in N (1.1 to 3.2 cm H2O) and C models (0 to 3.5 cm H2O). It was inversely related to expiratory time (Te). The end-expiratory pressure drop between Palv and Paw (delta EEP) was higher in N and increased from 0.5 to 2 cm H2O with the shortening of Te and with airway resistances, i.e. the presence of ETT. In the heterogeneous model, PEEP and delta EEP were greater in the higher compliance alveolus. This study shows that the end-expiratory Palv is underestimated by end-expiratory Paw.(ABSTRACT TRUNCATED AT 250 WORDS
    corecore