57 research outputs found

    Three-dimensional echocardiography for left ventricular quantification: fundamental validation and clinical applications

    Get PDF
    One of the earliest applications of clinical echocardiography is evaluation of left ventricular (LV) function and size. Accurate, reproducible and quantitative evaluation of LV function and size is vital for diagnosis, treatment and prediction of prognosis of heart disease. Early three-dimensional (3D) echocardiographic techniques showed better reproducibility than two-dimensional (2D) echocardiography and narrower limits of agreement for assessment of LV function and size in comparison to reference methods, mostly cardiac magnetic resonance (CMR) imaging, but acquisition methods were cumbersome and a lack of user-friendly analysis software initially precluded widespread use. Through the advent of matrix transducers enabling real-time three-dimensional echocardiography (3DE) and improvements in analysis software featuring semi-automated volumetric analysis, 3D echocardiography evolved into a simple and fast imaging modality for everyday clinical use. 3DE provides the possibility to evaluate the entire LV in three spatial dimensions during the complete cardiac cycle, offering a more accurate and complete quantitative evaluation the LV. Improved efficiency in acquisition and analysis may provide clinicians with important diagnostic information within minutes. The current article reviews the methodology and application of 3DE for quantitative evaluation of the LV, provides the scientific evidence for its current clinical use, and discusses its current limitations and potential future directions

    Comparison of contrast enhanced three dimensional echocardiography with MIBI gated SPECT for the evaluation of left ventricular function

    Get PDF
    Background. In clinical practice and in clinical trials, echocardiography and scintigraphy are used the most for the evaluation of global left ejection fraction (LVEF) and left ventricular (LV) volumes. Actually, poor quality imaging and geometrical assumptions are the main limitations of LVEF measured by echocardiography. Contrast agents and 3D echocardiography are new methods that may alleviate these potential limitations. Methods. Therefore we sought to examine the accuracy of contrast 3D echocardiography for the evaluation of LV volumes and LVEF relative to MIBI gated SPECT as an independent reference. In 43 patients addressed for chest pain, contrast 3D echocardiography (RT3DE) and MIBI gated SPECT were prospectively performed on the same day. The accuracy and the variability of LV volumes and LVEF measurements were evaluated. Results. Due to good endocardial delineation, LV volumes and LVEF measurements by contrast RT3DE were feasible in 99% of the patients. The mean LV end-diastolic volume (LVEDV) of the group by scintigraphy was 143 65 mL and was underestimated by triplane contrast RT3DE (128 60 mL; p < 0.001) and less by full-volume contrast RT3DE (132 62 mL; p < 0.001). Limits of agreement with scintigraphy were similar for triplane andfull-volume, modalities with the best results for full-volume. Results were similar for calculation of LV end-systolic volume (LVESV). The mean LVEF was 44 16% with scintigraphy and was not significantly different with both triplane contrast RT3DE (45 15%) and full-volume contrast RT3DE (45 15%). There was an excellent correlation between two different observers for LVEDV, LVESV and LVEF measurements and inter observer agreement was also good for both contrast RT3DE techniques. Conclusion. Contrast RT3DE allows an accurate assessment of LVEF compared to the LVEF measured by SPECT, and shows low variability between observers. Although RT3DE triplane provides accurate evaluation of left ventricular function, RT3DE full-volume is superior to triplane modality in patients with suspected coronary artery disease. © 2009 Cosyns et al; licensee BioMed Central Ltd.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Real-time three-dimensional transthoracic echocardiography in daily practice: initial experience

    Get PDF
    <p>Abstract</p> <p>Aim of the work</p> <p>To evaluate the feasibility and possible additional value of transthoracic real-time three-dimensional echocardiography (RT3D-TTE) for the assessment of cardiac structures as compared to 2D-TTE.</p> <p>Methods</p> <p>320 patients (mean age 45 ± 8.4 years, 75% males) underwent 2D-TTE and RT3D-TTE using 3DQ-Q lab software for offline analysis. Volume quantification and functional assessment was performed in 90 patients for left ventricle and in 20 patients for right ventricle. Assessment of native (112 patients) and prosthetic (30 patients) valves morphology and functions was performed. RT3D-TTE was performed for evaluation of septal defects in 30 patients and intracardiac masses in 52 patients.</p> <p>Results</p> <p>RT3D-TTE assessment of left ventricle was feasible and reproducible in 86% of patients while for right ventricle, it was (55%). RT3D-TTE could define the surface anatomy of mitral valve optimally (100%), while for aortic and tricuspid was (88% and 81% respectively). Valve area could be planimetered in 100% for the mitral and in 80% for the aortic. RT3D-TTE provided a comprehensive anatomical and functional evaluation of prosthetic valves. RT3D-TTE enface visualization of septal defects allowed optimal assessment of shape, size, area and number of defects and evaluated the outcome post device closure. RT3D-TTE allowed looking inside the intracardiac masses through multiple sectioning, valuable anatomical delineation and volume calculation.</p> <p>Conclusion</p> <p>Our initial experience showed that the use of RT3D-TTE in the assessment of cardiac patients is feasible and allowed detailed anatomical and functional assessment of many cardiac disorders.</p
    corecore