70 research outputs found

    Viral trans-factor independent replication of human papillomavirus genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Papillomaviruses (PVs) establish a persistent infection in the proliferating basal cells of the epithelium. The viral genome is replicated and maintained as a low-copy nuclear plasmid in basal keratinocytes. Bovine and human papillomaviruses (BPV and HPV) are known to utilize two viral proteins; E1, a DNA helicase, and E2, a transcription factor, which have been considered essential for viral DNA replication. However, growing evidence suggests that E1 and E2 are not entirely essential for stable replication of HPV.</p> <p>Results</p> <p>Here we report that multiple HPV16 mutants, lacking either or both E1 and E2 open reading frame (ORFs) and the long control region (LCR), still support extrachromosomal replication. Our data clearly indicate that HPV16 has a mode of replication, independent of viral trans-factors, E1 and E2, which is achieved by origin activity located outside of the LCR.</p

    Parts, Wholes, and Context in Reading: A Triple Dissociation

    Get PDF
    Research in object recognition has tried to distinguish holistic recognition from recognition by parts. One can also guess an object from its context. Words are objects, and how we recognize them is the core question of reading research. Do fast readers rely most on letter-by-letter decoding (i.e., recognition by parts), whole word shape, or sentence context? We manipulated the text to selectively knock out each source of information while sparing the others. Surprisingly, the effects of the knockouts on reading rate reveal a triple dissociation. Each reading process always contributes the same number of words per minute, regardless of whether the other processes are operating

    Psip1/p52 regulates posterior Hoxa genes through activation of lncRNA Hottip

    Get PDF
    Long noncoding RNAs (lncRNAs) have been implicated in various biological functions including the regulation of gene expression, however, the functionality of lncRNAs is not clearly understood and conflicting conclusions have often been reached when comparing different methods to investigate them. Moreover, little is known about the upstream regulation of lncRNAs. Here we show that the short isoform (p52) of a transcriptional co-activator—PC4 and SF2 interacting protein (Psip1), which is known to be involved in linking transcription to RNA processing, specifically regulates the expression of the lncRNA Hottip–located at the 5’ end of the Hoxa locus. Using both knockdown and knockout approaches we show that Hottip expression is required for activation of the 5’ Hoxa genes (Hoxa13 and Hoxa10/11) and for retaining Mll1 at the 5’ end of Hoxa. Moreover, we demonstrate that artificially inducing Hottip expression is sufficient to activate the 5’ Hoxa genes and that Hottip RNA binds to the 5’ end of Hoxa. By engineering premature transcription termination, we show that it is the Hottip lncRNA molecule itself, not just Hottip transcription that is required to maintains active expression of posterior Hox genes. Our data show a direct role for a lncRNA molecule in regulating the expression of developmentally-regulated mRNA genes in cis

    The Telomere Binding Protein TRF2 Induces Chromatin Compaction

    Get PDF
    Mammalian telomeres are specialized chromatin structures that require the telomere binding protein, TRF2, for maintaining chromosome stability. In addition to its ability to modulate DNA repair activities, TRF2 also has direct effects on DNA structure and topology. Given that mammalian telomeric chromatin includes nucleosomes, we investigated the effect of this protein on chromatin structure. TRF2 bound to reconstituted telomeric nucleosomal fibers through both its basic N-terminus and its C-terminal DNA binding domain. Analytical agarose gel electrophoresis (AAGE) studies showed that TRF2 promoted the folding of nucleosomal arrays into more compact structures by neutralizing negative surface charge. A construct containing the N-terminal and TRFH domains together altered the charge and radius of nucleosomal arrays similarly to full-length TRF2 suggesting that TRF2-driven changes in global chromatin structure were largely due to these regions. However, the most compact chromatin structures were induced by the isolated basic N-terminal region, as judged by both AAGE and atomic force microscopy. Although the N-terminal region condensed nucleosomal array fibers, the TRFH domain, known to alter DNA topology, was required for stimulation of a strand invasion-like reaction with nucleosomal arrays. Optimal strand invasion also required the C-terminal DNA binding domain. Furthermore, the reaction was not stimulated on linear histone-free DNA. Our data suggest that nucleosomal chromatin has the ability to facilitate this activity of TRF2 which is thought to be involved in stabilizing looped telomere structures

    Effects of beta-hydroxy-beta-methylbutyrate (HMB) on exercise performance and body composition across varying levels of age, sex, and training experience: A review

    Get PDF
    The leucine metabolite beta-hydroxy-beta-methylbutyrate (HMB) has been extensively used as an ergogenic aid; particularly among bodybuilders and strength/power athletes, who use it to promote exercise performance and skeletal muscle hypertrophy. While numerous studies have supported the efficacy of HMB in exercise and clinical conditions, there have been a number of conflicting results. Therefore, the first purpose of this paper will be to provide an in depth and objective analysis of HMB research. Special care is taken to present critical details of each study in an attempt to both examine the effectiveness of HMB as well as explain possible reasons for conflicting results seen in the literature. Within this analysis, moderator variables such as age, training experience, various states of muscle catabolism, and optimal dosages of HMB are discussed. The validity of dependent measurements, clustering of data, and a conflict of interest bias will also be analyzed. A second purpose of this paper is to provide a comprehensive discussion on possible mechanisms, which HMB may operate through. Currently, the most readily discussed mechanism has been attributed to HMB as a precursor to the rate limiting enzyme to cholesterol synthesis HMG-coenzyme A reductase. However, an increase in research has been directed towards possible proteolytic pathways HMB may operate through. Evidence from cachectic cancer studies suggests that HMB may inhibit the ubiquitin-proteasome proteolytic pathway responsible for the specific degradation of intracellular proteins. HMB may also directly stimulate protein synthesis, through an mTOR dependent mechanism. Finally, special care has been taken to provide future research implications
    corecore