187 research outputs found

    Prenatal origin of childhood AML occurs less frequently than in childhood ALL

    Get PDF
    Background While there is enough convincing evidence in childhood acute lymphoblastic leukemia (ALL), the data on the pre-natal origin in childhood acute myeloid leukemia (AML) are less comprehensive. Our study aimed to screen Guthrie cards (neonatal blood spots) of non-infant childhood AML and ALL patients for the presence of their respective leukemic markers. Methods We analysed Guthrie cards of 12 ALL patients aged 2–6 years using immunoglobulin (Ig) and T-cell receptor (TCR) gene rearrangements (n = 15) and/or intronic breakpoints of TEL/AML1 fusion gene (n = 3). In AML patients (n = 13, age 1–14 years) PML/RARalpha (n = 4), CBFbeta/MYH11 (n = 3), AML1/ETO (n = 2), MLL/AF6 (n = 1), MLL/AF9 (n = 1) and MLL/AF10 (n = 1) fusion genes and/or internal tandem duplication of FLT3 gene (FLT3/ITD) (n = 2) were used as clonotypic markers. Assay sensitivity determined using serial dilutions of patient DNA into the DNA of a healthy donor allowed us to detect the pre-leukemic clone in Guthrie card providing 1–3 positive cells were present in the neonatal blood spot. Results In 3 patients with ALL (25%) we reproducibly detected their leukemic markers (Ig/TCR n = 2; TEL/AML1 n = 1) in the Guthrie card. We did not find patient-specific molecular markers in any patient with AML. Conclusion In the largest cohort examined so far we used identical approach for the backtracking of non-infant childhood ALL and AML. Our data suggest that either the prenatal origin of AML is less frequent or the load of pre-leukemic cells is significantly lower at birth in AML compared to ALL cases

    FLT3 mutation incidence and timing of origin in a population case series of pediatric leukemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in <it>FLT3 </it>result in activated tyrosine kinase activity, cell growth stimulation, and a poor prognosis among various subtypes of leukemia. The causes and timing of the mutations are not currently known. We evaluated the prevalence and timing of origin of <it>FLT3 </it>mutations in a population series of childhood leukemia patients from Northern California.</p> <p>Methods</p> <p>We screened and sequenced <it>FLT3 </it>mutations (point mutations and internal tandem duplications, ITDs) among 517 childhood leukemia patients, and assessed whether these mutations occurred before or after birth using sensitive "backtracking" methods.</p> <p>Results</p> <p>We determined a mutation prevalence of 9 of 73 acute myeloid leukemias (AMLs, 12%) and 9 of 441 acute lymphocytic leukemias (ALLs, 2%). Among AMLs, <it>FLT3 </it>mutations were more common in older patients, and among ALLs, <it>FLT3 </it>mutations were more common in patients with high hyperdiploidy (3.7%) than those without this cytogenetic feature (1.4%). Five <it>FLT3 </it>ITDs, one deletion mutation, and 3 point mutations were assessed for their presence in neonatal Guthrie spots using sensitive real-time PCR techniques, and no patients were found to harbor <it>FLT3 </it>mutations at birth.</p> <p>Conclusions</p> <p><it>FLT3 </it>mutations were not common in our population-based patient series in California, and patients who harbor <it>FLT3 </it>mutations most likely acquire them after they are born.</p

    Presence of clone-specific markers at birth in children with acute lymphoblastic leukaemia

    Get PDF
    Recent studies have suggested that development of childhood acute lymphoblastic leukaemia may often be initiated in utero. To provide further evidence of an prenatal origin of childhood leukaemia, we conducted a molecular biological investigation of nine children with B-precursor acute lymphoblastic leukaemia carrying the chromosomal translocation t(12;21), the most common subtype of all childhood acute lymphoblastic leukaemia. Specifically, for each child we identified the non-constitutive chromosomal sequences made up by the t(12;21) fusion gene. From these, leukaemia clone-specific DNA primers were constructed and applied in nested polymerase chain reaction analyses of DNA extracted from the patients' Guthrie cards obtained at birth. Leukaemia clone-specific fusion gene regions were demonstrated in Guthrie card DNA of three patients, age 2 years 11 months, 3 years 4 months, and 5 years 8 months at leukaemia diagnosis. Our findings are consistent with previous observations, and thus provide further evidence that the development of t(12;21) B-precursor acute lymphoblastic leukaemia may be initiated in utero. Review of the current literature moreover indicates that age at leukaemia may be inversely correlated with the burden of cells with leukaemia clonal markers, i.e. leukaemia predisposed cells at birth, and that certain types of childhood acute lymphoblastic leukaemia develop as a multiple step process involving both pre- and postnatal genetic events

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Genetic overlap between endometriosis and endometrial cancer: evidence from cross-disease genetic correlation and GWAS meta-analyses.

    Get PDF
    Epidemiological, biological, and molecular data suggest links between endometriosis and endometrial cancer, with recent epidemiological studies providing evidence for an association between a previous diagnosis of endometriosis and risk of endometrial cancer. We used genetic data as an alternative approach to investigate shared biological etiology of these two diseases. Genetic correlation analysis of summary level statistics from genomewide association studies (GWAS) using LD Score regression revealed moderate but significant genetic correlation (rg  = 0.23, P = 9.3 × 10-3 ), and SNP effect concordance analysis provided evidence for significant SNP pleiotropy (P = 6.0 × 10-3 ) and concordance in effect direction (P = 2.0 × 10-3 ) between the two diseases. Cross-disease GWAS meta-analysis highlighted 13 distinct loci associated at P ≤ 10-5 with both endometriosis and endometrial cancer, with one locus (SNP rs2475335) located within PTPRD associated at a genomewide significant level (P = 4.9 × 10-8 , OR = 1.11, 95% CI = 1.07-1.15). PTPRD acts in the STAT3 pathway, which has been implicated in both endometriosis and endometrial cancer. This study demonstrates the value of cross-disease genetic analysis to support epidemiological observations and to identify biological pathways of relevance to multiple diseases

    Reproductive profiles and risk of breast cancer subtypes : a multi-center case-only study

    Get PDF
    Background: Previous studies have shown that reproductive factors are differentially associated with breast cancer (BC) risk by subtypes. The aim of this study was to investigate associations between reproductive factors and BC subtypes, and whether these vary by age at diagnosis. Methods: We used pooled data on tumor markers (estrogen and progesterone receptor, human epidermal growth factor receptor-2 (HER2)) and reproductive risk factors (parity, age at first full-time pregnancy (FFTP) and age at menarche) from 28,095 patients with invasive BC from 34 studies participating in the Breast Cancer Association Consortium (BCAC). In a case-only analysis, we used logistic regression to assess associations between reproductive factors and BC subtype compared to luminal A tumors as a reference. The interaction between age and parity in BC subtype risk was also tested, across all ages and, because age was modeled non-linearly, specifically at ages 35, 55 and 75 years. Results: Parous women were more likely to be diagnosed with triple negative BC (TNBC) than with luminal A BC, irrespective of age (OR for parity = 1.38, 95% CI 1.16-1.65, p = 0.0004; p for interaction with age = 0.076). Parous women were also more likely to be diagnosed with luminal and non-luminal HER2-like BCs and this effect was slightly more pronounced at an early age (p for interaction with age = 0.037 and 0. 030, respectively). For instance, women diagnosed at age 35 were 1.48 (CI 1.01-2.16) more likely to have luminal HER2-like BC than luminal A BC, while this association was not significant at age 75 (OR = 0.72, CI 0.45-1.14). While age at menarche was not significantly associated with BC subtype, increasing age at FFTP was non-linearly associated with TNBC relative to luminal A BC. An age at FFTP of 25 versus 20 years lowered the risk for TNBC (OR = 0.78, CI 0.70-0.88, p <0.0001), but this effect was not apparent at a later FFTP. Conclusions: Our main findings suggest that parity is associated with TNBC across all ages at BC diagnosis, whereas the association with luminal HER2-like BC was present only for early onset BC.Peer reviewe

    Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: a combined case-control study.

    Get PDF
    INTRODUCTION: Several common breast cancer genetic susceptibility variants have recently been identified. We aimed to determine how these variants combine with a subset of other known risk factors to influence breast cancer risk in white women of European ancestry using case-control studies participating in the Breast Cancer Association Consortium. METHODS: We evaluated two-way interactions between each of age at menarche, ever having had a live birth, number of live births, age at first birth and body mass index (BMI) and each of 12 single nucleotide polymorphisms (SNPs) (10q26-rs2981582 (FGFR2), 8q24-rs13281615, 11p15-rs3817198 (LSP1), 5q11-rs889312 (MAP3K1), 16q12-rs3803662 (TOX3), 2q35-rs13387042, 5p12-rs10941679 (MRPS30), 17q23-rs6504950 (COX11), 3p24-rs4973768 (SLC4A7), CASP8-rs17468277, TGFB1-rs1982073 and ESR1-rs3020314). Interactions were tested for by fitting logistic regression models including per-allele and linear trend main effects for SNPs and risk factors, respectively, and single-parameter interaction terms for linear departure from independent multiplicative effects. RESULTS: These analyses were applied to data for up to 26,349 invasive breast cancer cases and up to 32,208 controls from 21 case-control studies. No statistical evidence of interaction was observed beyond that expected by chance. Analyses were repeated using data from 11 population-based studies, and results were very similar. CONCLUSIONS: The relative risks for breast cancer associated with the common susceptibility variants identified to date do not appear to vary across women with different reproductive histories or body mass index (BMI). The assumption of multiplicative combined effects for these established genetic and other risk factors in risk prediction models appears justified.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    No evidence that genetic variation in the myeloid-derived suppressor cell pathway influences ovarian cancer survival

    Get PDF
    BACKGROUND: The precise mechanism by which the immune system is adversely affected in cancer patients remains poorly understood, but the accumulation of immune suppressive/pro-tumorigenic myeloid-derived suppressor cells (MDSCs) is thought to be one prominent mechanism contributing to immunologic tolerance of malignant cells in epithelial ovarian cancer (EOC). To this end, we hypothesized genetic variation in MDSC pathway genes would be associated with survival after EOC diagnoses. METHODS: We measured the hazard of death due to EOC within 10 years of diagnosis, overall and by invasive subtype, attributable to SNPs in 24 genes relevant in the MDSC pathway in 10,751 women diagnosed with invasive EOC. Versatile Gene-based Association study (VEGAS) and the Admixture Likelihood method (AML), were used to test gene and pathway associations with survival. RESULTS: We did not identify individual SNPs that were significantly associated with survival after correction for multiple testing (p<3.5 x 10-5), nor did we identify significant associations between the MDSC pathway overall, or the 24 individual genes and EOC survival. CONCLUSIONS: In this well-powered analysis, we observed no evidence that inherited variations in MDSC-associated SNPs, individual genes, or the collective genetic pathway contributed to EOC survival outcomes. IMPACT: Common inherited variation in genes relevant to MDSCs were not associated with survival in women diagnosed with invasive EOC

    Association of breast cancer risk with genetic variants showing differential allelic expression: Identification of a novel breast cancer susceptibility locus at 4q21

    Get PDF
    There are significant inter-individual differences in the levels of gene expression. Through modulation of gene expression, cis\textit{cis}-acting variants represent an important source of phenotypic variation. Consequently, cis\textit{cis}-regulatory SNPs associated with differential allelic expression are functional candidates for further investigation as disease-causing variants. To investigate whether common variants associated with differential allelic expression were involved in breast cancer susceptibility, a list of genes was established on the basis of their involvement in cancer related pathways and/or mechanisms. Thereafter, using data from a genome-wide map of allelic expression associated SNPs, 313 genetic variants were selected and their association with breast cancer risk was then evaluated in 46,451 breast cancer cases and 42,599 controls of European ancestry ascertained from 41 studies participating in the Breast Cancer Association Consortium. The associations were evaluated with overall breast cancer risk and with estrogen receptor negative and positive disease. One novel breast cancer susceptibility locus on 4q21 (rs11099601) was identified (OR = 1.05, P\textit{P} = 5.6x106^{-6}). rs11099601 lies in a 135 kb linkage disequilibrium block containing several genes, including, HELQ\textit{HELQ}, encoding the protein HEL308 a DNA dependant ATPase and DNA Helicase involved in DNA repair, MRPS18C\textit{MRPS18C} encoding the Mitochondrial Ribosomal Protein S18C and FAM175A (ABRAXAS)\textit{FAM175A (ABRAXAS)}, encoding a BRCA1\textit{BRCA1} BRCT domain-interacting protein involved in DNA damage response and double-strand break (DSB) repair. Expression QTL analysis in breast cancer tissue showed rs11099601 to be associated with HELQ \textit{HELQ } (P\textit{P} = 8.28x1014^{-14}), MRPS18C\textit{MRPS18C} (P\textit{P} = 1.94x1027^{-27}) and FAM175A \textit{FAM175A } (P\textit{P} = 3.83x103^{-3}), explaining about 20%, 14% and 1%, respectively of the variance inexpression of these genes in breast carcinomas.Information regarding funding can be found in the published article or the publisher's website. Funders include Cancer Research UK and the National Institute for Health Research

    RAD51B in Familial Breast Cancer.

    Full text link
    Common variation on 14q24.1, close to RAD51B, has been associated with breast cancer: rs999737 and rs2588809 with the risk of female breast cancer and rs1314913 with the risk of male breast cancer. The aim of this study was to investigate the role of RAD51B variants in breast cancer predisposition, particularly in the context of familial breast cancer in Finland. We sequenced the coding region of RAD51B in 168 Finnish breast cancer patients from the Helsinki region for identification of possible recurrent founder mutations. In addition, we studied the known rs999737, rs2588809, and rs1314913 SNPs and RAD51B haplotypes in 44,791 breast cancer cases and 43,583 controls from 40 studies participating in the Breast Cancer Association Consortium (BCAC) that were genotyped on a custom chip (iCOGS). We identified one putatively pathogenic missense mutation c.541C>T among the Finnish cancer patients and subsequently genotyped the mutation in additional breast cancer cases (n = 5259) and population controls (n = 3586) from Finland and Belarus. No significant association with breast cancer risk was seen in the meta-analysis of the Finnish datasets or in the large BCAC dataset. The association with previously identified risk variants rs999737, rs2588809, and rs1314913 was replicated among all breast cancer cases and also among familial cases in the BCAC dataset. The most significant association was observed for the haplotype carrying the risk-alleles of all the three SNPs both among all cases (odds ratio (OR): 1.15, 95% confidence interval (CI): 1.11-1.19, P = 8.88 x 10-16) and among familial cases (OR: 1.24, 95% CI: 1.16-1.32, P = 6.19 x 10-11), compared to the haplotype with the respective protective alleles. Our results suggest that loss-of-function mutations in RAD51B are rare, but common variation at the RAD51B region is significantly associated with familial breast cancer risk
    corecore