24 research outputs found

    Non-invasive assessment of adrenocortical activity as a measure of stress in giraffe (Giraffa camelopardalis)

    Get PDF
    Additional file 1: Full dataset in Microsoft Excel workbook format.BACKGROUND : Numbers of giraffes are declining rapidly in their native habitat. As giraffe research and conservation efforts increase, the demand for more complete measures of the impact of conservation interventions and the effects of captive environments on animal health and welfare have risen. We compared the ability of six different enzyme immunoassays to quantify changes in fecal glucocorticoid metabolites (FGM) resulting from three sources: adrenocorticotropic hormone stimulation test, transport, and time of day that samples were collected. RESULTS : Two male giraffes underwent ACTH injections; all six assays detected FGM increases following injection for Giraffe 1, while only three assays detected FGM increases following injection for Giraffe 2. Consistent with other ruminant species, the two 11-oxoetiocholanolone assays (one for 11,17-dioxoandrostanes and the other for 3α,11-oxo metabolites) measured the most pronounced and prolonged elevation of FGM, while an assay for 3β,11β-diol detected peaks of smaller magnitude and duration. Both of the 11-oxoetiocholanolone assays detected significant FGM increases after transport in Giraffes 3–7, and preliminary data suggest FGM detected by the assay for 11,17-dioxoandrostanes may differ across time of day. CONCLUSIONS : We conclude the assay for 11,17-dioxoandrostanes is the most sensitive assay tested for FGM in giraffes and the assay for FGM with a 5β-3α-ol-11-one structure is also effective. 11-oxoetiocholanolone enzyme immunoassays have now been demonstrated to be successful in a wide variety of ruminant species, providing indirect evidence that 5β-reduction may be a common metabolic pathway for glucocorticoids in ruminants. As FGM peaks were detected in at least some giraffes using all assays tested, giraffes appear to excrete a wide variety of different FGM. The assays validated here will provide a valuable tool for research on the health, welfare, and conservation of giraffes.The Association of Friends and Supporters of Goethe University Frankfurt provided financial support for F. Sicks to travel to Vienna to analyze fecal samples and von Opel Hessische Zoostiftung supported a studentship for F. Sicks. One commercial funder [Tierpark Berlin] provided support in the form of salary for F. Sicks during data analysis and preparation of this manuscript. The specific role of this author is articulated in the ‘Author Contributions’ section.http://www.biomedcentral.com/bmcvetresam2016Anatomy and PhysiologyParaclinical Science

    SYSTEM-IDENTIFICATION TEST USING ACTIVE MEMBERS

    No full text
    A modal test using active members as the excitation source has been performed on a test bed truss structure representative of a portion of a large space system. Using the step sine testing technique, the frequency response functions are obtained and the modal parameters are extracted by the curve-fitting method. A total of 10 global modes and 3 local modes are obtained. The results are compared with those obtained by the conventional external excitation test

    Nonlinear modeling for adaptive suppression of axial drilling vibration

    No full text
    © The Society for Experimental Mechanics, Inc. 2014. Vibrations developed during drilling present challenges in an array of industries including mechanical, medical, structural, and oil extraction. Velocity weakening, intracranial vibrations, large amplitude standing pressure waves in material cavities, and failure of drill strings are prominent issues among these fields. Stick-slip (torsional) and bit-bounce (axial) vibrations have been found to be particularly problematic in precision drilling jobs such as machining to tight tolerances, dismantling vibration-sensitive devices, and surgical work. Current technologies to detect and suppress systematic vibrations have several shortcomings including malfunctioning, complete failure, complexity, and high power consumption. This paper proposes a method to suppress vibrations of drilling material surfaces using adaptive positive position feedback (APPF) control for efficient tunable damping. An experiment-based parametric study has been conducted to determine the relationship of force, rotational velocity, and acceleration on both drill vibrations and drilling material surface vibrations. Results of a parametric study and Rational Polynomial Fraction method are used to estimate fundamental behaviors of the drilling system to create a refined numerical model for simulating the drilling process. An APPF controller together with the model provided a method to evaluate new actuator designs for vibration suppression and has shown a 69.8 % reduction of displacement vibrations
    corecore