52 research outputs found

    Elbow medial collateral ligament injuries

    Get PDF
    Elbow medial collateral ligament sprain occurs when the elbow is subjected to a valgus force exceeding the tensile properties of the medial collateral ligament (MCL). This is an injury seen more often in throwing athletes. Understanding the differential diagnosis of medial elbow pain is paramount to diagnose MCL injury as well as addressing other medial elbow pathology. A natural evolution regarding MCL injury has occurred over the past 20 years, with modifications of the original surgical procedure, specificity and sensitivity analysis of imaging modalities, and physical exam maneuvers to diagnose MCL pathology. In order for the MCL literature to advance further, more biomechanical and long-term clinical outcome data for the respective surgical modifications are needed. This review describes MCL injury pathophysiology, patient evaluation, reconstruction indications/contraindications, and current and evolving surgical techniques

    Crystal Structures of the NblA Protein

    No full text

    Operation of an optoelectronic crossbar switch containing a terabit-per-second free-space optical interconnect

    No full text
    The experimental operation of a terabit-per-second scale optoelectronic connection to a silicon very-large-scale-integrated circuit is described. A demonstrator system, in the form of an optoelectronic crossbar switch, has been constructed as a technology test bed. The assembly and testing of the components making up the system, including a flip-chipped InGaAs-GaAs optical interface chip, are reported. Using optical inputs to the electronic switching chip, single-channel routing of data through the system at the design rate of 250 Mb/s (without internal fan-out) was achieved. With 4000 optical inputs, this corresponds to a potential aggregate data input of a terabit per second into the single 14.6 x 15.6 mm CMOS chip. In addition 50-Mb/s data rates were switched utilizing the full internal optical fan-out included in the system to complete the required connectivity. This simultaneous input of data across the chip corresponds to an aggregate data input of 0.2 Tb/s. The experimental system also utilized optical distribution of clock signals across the CMOS chip

    Design and construction of an optoelectronic crossbar switch containing a terabit per second free-space optical interconnect

    No full text
    The completed detailed design and initial phases of construction of an optoelectronic crossbar demonstrator are presented. The experimental system uses hybrid very large scale integrated optoelectronics technology whereby In CaAs-based detectors and modulators are flip-chip bonded onto silicon integrated circuits. The system aims to demonstrate (a 1-Tb/s aggregate data input/output to a single chip by means of free-space optics
    corecore