46 research outputs found

    Lentiviral Vpx Accessory Factor Targets VprBP/DCAF1 Substrate Adaptor for Cullin 4 E3 Ubiquitin Ligase to Enable Macrophage Infection

    Get PDF
    Vpx is a small virion-associated adaptor protein encoded by viruses of the HIV-2/SIVsm lineage of primate lentiviruses that enables these viruses to transduce monocyte-derived cells. This probably reflects the ability of Vpx to overcome an as yet uncharacterized block to an early event in the virus life cycle in these cells, but the underlying mechanism has remained elusive. Using biochemical and proteomic approaches, we have found that Vpx protein of the pathogenic SIVmac 239 strain associates with a ternary protein complex comprising DDB1 and VprBP subunits of Cullin 4–based E3 ubiquitin ligase, and DDA1, which has been implicated in the regulation of E3 catalytic activity, and that Vpx participates in the Cullin 4 E3 complex comprising VprBP. We further demonstrate that the ability of SIVmac as well as HIV-2 Vpx to interact with VprBP and its associated Cullin 4 complex is required for efficient reverse transcription of SIVmac RNA genome in primary macrophages. Strikingly, macrophages in which VprBP levels are depleted by RNA interference resist SIVmac infection. Thus, our observations reveal that Vpx interacts with both catalytic and regulatory components of the ubiquitin proteasome system and demonstrate that these interactions are critical for Vpx ability to enable efficient SIVmac replication in primary macrophages. Furthermore, they identify VprBP/DCAF1 substrate receptor for Cullin 4 E3 ubiquitin ligase and its associated protein complex as immediate downstream effector of Vpx for this function. Together, our findings suggest a model in which Vpx usurps VprBP-associated Cullin 4 ubiquitin ligase to enable efficient reverse transcription and thereby overcome a block to lentivirus replication in monocyte-derived cells, and thus provide novel insights into the underlying molecular mechanism

    Differential Effects of Vpr on Single-cycle and Spreading HIV-1 Infections in CD4+ T-cells and Dendritic Cells

    Get PDF
    The Vpr protein of human immunodeficiency virus type 1 (HIV-1) contributes to viral replication in non-dividing cells, specifically those of the myeloid lineage. However, the effects of Vpr in enhancing HIV-1 infection in dendritic cells have not been extensively investigated. Here, we evaluated the role of Vpr during infection of highly permissive peripheral blood mononuclear cells (PBMCs) and CD4+ T-cells and compared it to that of monocyte-derived dendritic cells (MDDCs), which are less susceptible to HIV-1 infection. Infections of dividing PBMCs and non-dividing MDDCs were carried out with single-cycle and replication-competent HIV-1 encoding intact Vpr or Vpr-defective mutants. In contrast to previous findings, we observed that single-cycle HIV-1 infection of both PBMCs and MDDCs was significantly enhanced in the presence of Vpr when the viral stocks were carefully characterized and titrated. HIV-1 DNA quantification revealed that Vpr only enhanced the reverse transcription and nuclear import processes in single-cycle HIV-1 infected MDDCs, but not in CD4+ T-cells. However, a significant enhancement in HIV-1 gag mRNA expression was observed in both CD4+ T-cells and MDDCs in the presence of Vpr. Furthermore, Vpr complementation into HIV-1 virions did not affect single-cycle viral infection of MDDCs, suggesting that newly synthesized Vpr plays a significant role to facilitate single-cycle HIV-1 infection. Over the course of a spreading infection, Vpr significantly enhanced replication-competent HIV-1 infection in MDDCs, while it modestly promoted viral infection in activated PBMCs. Quantification of viral DNA in replication-competent HIV-1 infected PBMCs and MDDCs revealed similar levels of reverse transcription products, but increased nuclear import in the presence of Vpr independent of the cell types. Taken together, our results suggest that Vpr has differential effects on single-cycle and spreading HIV-1 infections, which are dependent on the permissiveness of the target cell

    Ethanol-Induced Face-Brain Dysmorphology Patterns Are Correlative and Exposure-Stage Dependent

    Get PDF
    Prenatal ethanol exposure is the leading preventable cause of congenital mental disability. Whereas a diagnosis of fetal alcohol syndrome (FAS) requires identification of a specific pattern of craniofacial dysmorphology, most individuals with behavioral and neurological sequelae of heavy prenatal ethanol exposure do not exhibit these defining facial characteristics. Here, a novel integration of MRI and dense surface modeling-based shape analysis was applied to characterize concurrent face-brain phenotypes in C57Bl/6J fetuses exposed to ethanol on gestational day (GD)7 or GD8.5. The facial phenotype resulting from ethanol exposure depended upon stage of insult and was predictive of unique patterns of corresponding brain abnormalities. Ethanol exposure on GD7 produced a constellation of dysmorphic facial features characteristic of human FAS, including severe midfacial hypoplasia, shortening of the palpebral fissures, an elongated upper lip, and deficient philtrum. In contrast, ethanol exposure on GD8.5 caused mild midfacial hypoplasia and palpebral fissure shortening, a shortened upper lip, and a preserved philtrum. These distinct, stage-specific facial phenotypes were associated with unique volumetric and shape abnormalities of the septal region, pituitary, and olfactory bulbs. By demonstrating that early prenatal ethanol exposure can cause more than one temporally-specific pattern of defects, these findings illustrate the need for an expansion of current diagnostic criteria to better capture the full range of facial and brain dysmorphology in fetal alcohol spectrum disorders

    Thriving under Stress: Selective Translation of HIV-1 Structural Protein mRNA during Vpr-Mediated Impairment of eIF4E Translation Activity

    Get PDF
    Translation is a regulated process and is pivotal to proper cell growth and homeostasis. All retroviruses rely on the host translational machinery for viral protein synthesis and thus may be susceptible to its perturbation in response to stress, co-infection, and/or cell cycle arrest. HIV-1 infection arrests the cell cycle in the G2/M phase, potentially disrupting the regulation of host cell translation. In this study, we present evidence that HIV-1 infection downregulates translation in lymphocytes, attributable to the cell cycle arrest induced by the HIV-1 accessory protein Vpr. The molecular basis of the translation suppression is reduced accumulation of the active form of the translation initiation factor 4E (eIF4E). However, synthesis of viral structural proteins is sustained despite the general suppression of protein production. HIV-1 mRNA translation is sustained due to the distinct composition of the HIV-1 ribonucleoprotein complexes. RNA-coimmunoprecipitation assays determined that the HIV-1 unspliced and singly spliced transcripts are predominantly associated with nuclear cap binding protein 80 (CBP80) in contrast to completely-spliced viral and cellular mRNAs that are associated with eIF4E. The active translation of the nuclear cap binding complex (CBC)-bound viral mRNAs is demonstrated by ribosomal RNA profile analyses. Thus, our findings have uncovered that the maintenance of CBC association is a novel mechanism used by HIV-1 to bypass downregulation of eIF4E activity and sustain viral protein synthesis. We speculate that a subset of CBP80-bound cellular mRNAs contribute to recovery from significant cellular stress, including human retrovirus infection

    Characterization of the Molecular Determinants of Primary HIV-1 Vpr Proteins: Impact of the Q65R and R77Q Substitutions on Vpr Functions

    Get PDF
    Although HIV-1 Vpr displays several functions in vitro, limited information exists concerning their relevance during infection. Here, we characterized Vpr variants isolated from a rapid and a long-term non-progressor (LTNP). Interestingly, vpr alleles isolated from longitudinal samples of the LTNP revealed a dominant sequence that subsequently led to diversity similar to that observed in the progressor patient. Most of primary Vpr proteins accumulated at the nuclear envelope and interacted with host-cell partners of Vpr. They displayed cytostatic and proapoptotic activities, although a LTNP allele, harboring the Q65R substitution, failed to bind the DCAF1 subunit of the Cul4a/DDB1 E3 ligase and was inactive. This Q65R substitution correlated with impairment of Vpr docking at the nuclear envelope, raising the possibility of a functional link between this property and the Vpr cytostatic activity. In contradiction with published results, the R77Q substitution, found in LTNP alleles, did not influence Vpr proapoptotic activity

    Formation of Mobile Chromatin-Associated Nuclear Foci Containing HIV-1 Vpr and VPRBP Is Critical for the Induction of G2 Cell Cycle Arrest

    Get PDF
    HIV-1 Viral protein R (Vpr) induces a cell cycle arrest at the G2/M phase by activating the ATR DNA damage/stress checkpoint. Recently, we and several other groups showed that Vpr performs this activity by recruiting the DDB1-CUL4A (VPRBP) E3 ubiquitin ligase. While recruitment of this E3 ubiquitin ligase complex has been shown to be required for G2 arrest, the subcellular compartment where this complex forms and functionally acts is unknown. Herein, using immunofluorescence and confocal microscopy, we show that Vpr forms nuclear foci in several cell types including HeLa cells and primary CD4+ T-lymphocytes. These nuclear foci contain VPRBP and partially overlap with DNA repair foci components such as γ-H2AX, 53BP1 and RPA32. While treatment with the non-specific ATR inhibitor caffeine or depletion of VPRBP by siRNA did not inhibit formation of Vpr nuclear foci, mutations in the C-terminal domain of Vpr and cytoplasmic sequestration of Vpr by overexpression of Gag-Pol resulted in impaired formation of these nuclear structures and defective G2 arrest. Consistently, we observed that G2 arrest-competent sooty mangabey Vpr could form these foci but not its G2 arrest-defective paralog Vpx, suggesting that formation of Vpr nuclear foci represents a critical early event in the induction of G2 arrest. Indeed, we found that Vpr could associate to chromatin via its C-terminal domain and that it could form a complex with VPRBP on chromatin. Finally, analysis of Vpr nuclear foci by time-lapse microscopy showed that they were highly mobile and stable structures. Overall, our results suggest that Vpr recruits the DDB1-CUL4A (VPRBP) E3 ligase to these nuclear foci and uses these mobile structures to target a chromatin-bound cellular substrate for ubiquitination in order to induce DNA damage/replication stress, ultimately leading to ATR activation and G2 cell cycle arrest

    Exposed Hydrophobic Residues in Human Immunodeficiency Virus Type 1 Vpr Helix-1 Are Important for Cell Cycle Arrest and Cell Death

    Get PDF
    The human immunodeficiency virus type 1 (HIV-1) accessory protein viral protein R (Vpr) is a major determinant for virus-induced G2/M cell cycle arrest and cytopathicity. Vpr is thought to perform these functions through the interaction with partner proteins. The NMR structure of Vpr revealed solvent exposed hydrophobic amino acids along helices 1 and 3 of Vpr, which could be putative protein binding domains. We previously showed that the hydrophobic patch along helix-3 was important for G2/M blockade and cytopathicity. Mutations of the exposed hydrophobic residues along helix-1 were found to reduce Vpr-induced cell cycle arrest and cell death as well. The levels of toxicity during virion delivery of Vpr correlated with G2/M arrest. Thus, the exposed hydrophobic amino acids in the amino-terminal helix-1 are important for the cell cycle arrest and cytopathicity functions of Vpr

    β-1,3-Glucan-Induced Host Phospholipase D Activation Is Involved in Aspergillus fumigatus Internalization into Type II Human Pneumocyte A549 Cells

    Get PDF
    The internalization of Aspergillus fumigatus into lung epithelial cells is a process that depends on host cell actin dynamics. The host membrane phosphatidylcholine cleavage driven by phospholipase D (PLD) is closely related to cellular actin dynamics. However, little is known about the impact of PLD on A. fumigatus internalization into lung epithelial cells. Here, we report that once germinated, A. fumigatus conidia were able to stimulate host PLD activity and internalize more efficiently in A549 cells without altering PLD expression. The internalization of A. fumigatus in A549 cells was suppressed by the downregulation of host cell PLD using chemical inhibitors or siRNA interference. The heat-killed swollen conidia, but not the resting conidia, were able to activate host PLD. Further, β-1,3-glucan, the core component of the conidial cell wall, stimulated host PLD activity. This PLD activation and conidia internalization were inhibited by anti-dectin-1 antibody. Indeed, dectin-1, a β-1,3-glucan receptor, was expressed in A549 cells, and its expression profile was not altered by conidial stimulation. Finally, host cell PLD1 and PLD2 accompanied A. fumigatus conidia during internalization. Our data indicate that host cell PLD activity induced by β-1,3-glucan on the surface of germinated conidia is important for the efficient internalization of A. fumigatus into A549 lung epithelial cells

    Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes

    Get PDF
    BACKGROUND: Data are lacking on the long-term effect on cardiovascular events of adding sitagliptin, a dipeptidyl peptidase 4 inhibitor, to usual care in patients with type 2 diabetes and cardiovascular disease. METHODS: In this randomized, double-blind study, we assigned 14,671 patients to add either sitagliptin or placebo to their existing therapy. Open-label use of antihyperglycemic therapy was encouraged as required, aimed at reaching individually appropriate glycemic targets in all patients. To determine whether sitagliptin was noninferior to placebo, we used a relative risk of 1.3 as the marginal upper boundary. The primary cardiovascular outcome was a composite of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for unstable angina. RESULTS: During a median follow-up of 3.0 years, there was a small difference in glycated hemoglobin levels (least-squares mean difference for sitagliptin vs. placebo, -0.29 percentage points; 95% confidence interval [CI], -0.32 to -0.27). Overall, the primary outcome occurred in 839 patients in the sitagliptin group (11.4%; 4.06 per 100 person-years) and 851 patients in the placebo group (11.6%; 4.17 per 100 person-years). Sitagliptin was noninferior to placebo for the primary composite cardiovascular outcome (hazard ratio, 0.98; 95% CI, 0.88 to 1.09; P<0.001). Rates of hospitalization for heart failure did not differ between the two groups (hazard ratio, 1.00; 95% CI, 0.83 to 1.20; P = 0.98). There were no significant between-group differences in rates of acute pancreatitis (P = 0.07) or pancreatic cancer (P = 0.32). CONCLUSIONS: Among patients with type 2 diabetes and established cardiovascular disease, adding sitagliptin to usual care did not appear to increase the risk of major adverse cardiovascular events, hospitalization for heart failure, or other adverse events

    Evacetrapib and Cardiovascular Outcomes in High-Risk Vascular Disease

    Get PDF
    BACKGROUND: The cholesteryl ester transfer protein inhibitor evacetrapib substantially raises the high-density lipoprotein (HDL) cholesterol level, reduces the low-density lipoprotein (LDL) cholesterol level, and enhances cellular cholesterol efflux capacity. We sought to determine the effect of evacetrapib on major adverse cardiovascular outcomes in patients with high-risk vascular disease. METHODS: In a multicenter, randomized, double-blind, placebo-controlled phase 3 trial, we enrolled 12,092 patients who had at least one of the following conditions: an acute coronary syndrome within the previous 30 to 365 days, cerebrovascular atherosclerotic disease, peripheral vascular arterial disease, or diabetes mellitus with coronary artery disease. Patients were randomly assigned to receive either evacetrapib at a dose of 130 mg or matching placebo, administered daily, in addition to standard medical therapy. The primary efficacy end point was the first occurrence of any component of the composite of death from cardiovascular causes, myocardial infarction, stroke, coronary revascularization, or hospitalization for unstable angina. RESULTS: At 3 months, a 31.1% decrease in the mean LDL cholesterol level was observed with evacetrapib versus a 6.0% increase with placebo, and a 133.2% increase in the mean HDL cholesterol level was seen with evacetrapib versus a 1.6% increase with placebo. After 1363 of the planned 1670 primary end-point events had occurred, the data and safety monitoring board recommended that the trial be terminated early because of a lack of efficacy. After a median of 26 months of evacetrapib or placebo, a primary end-point event occurred in 12.9% of the patients in the evacetrapib group and in 12.8% of those in the placebo group (hazard ratio, 1.01; 95% confidence interval, 0.91 to 1.11; P=0.91). CONCLUSIONS: Although the cholesteryl ester transfer protein inhibitor evacetrapib had favorable effects on established lipid biomarkers, treatment with evacetrapib did not result in a lower rate of cardiovascular events than placebo among patients with high-risk vascular disease. (Funded by Eli Lilly; ACCELERATE ClinicalTrials.gov number, NCT01687998 .)
    corecore