12 research outputs found

    Chromosome conformation signatures define predictive markers of inadequate response to methotrexate in early rheumatoid arthritis

    Get PDF
    The authors would like to thank members of OBD Reference Facility Benjamin Foulkes, Chloe Bird, Emily Corfeld and Matthew Salter for expedient processing of clinical samples on the EpiSwitchℱ platform and Magdalena Jeznach and Willem Westra for help with preparation of the manuscript. The study employed samples from the SERA Biobank used with permission and approval of the SERA Approval Group. We gratefully acknowledge the invaluable contribution of the clinicians and operating team in SERA. We would also like to thank Prof. Raju Kucherlapati (Harvard Medical School), and Prof. Jane Mellor (Oxford Univ.), Prof. John O’Shea (National Institute of Health) and Prof. John Isaacs (New Castle Univ.) for their independent and critical review of our study. A list of Scottish Early Rheumatoid Arthritis (SERA) inception cohort investigators is provided in Additional fle 1: Additional Note. Funding This work was funded by Oxford BioDynamics.Peer reviewedPublisher PD

    N6-methyladenosine regulates the stability of RNA:DNA hybrids in human cells

    No full text
    R-loops are nucleic acid structures formed by an RNA:DNA hybrid and unpaired single-stranded DNA that represent a source of genomic instability in mammalian cells1,2,3,4. Here we show that N6-methyladenosine (m6A) modification, contributing to different aspects of messenger RNA metabolism5,6, is detectable on the majority of RNA:DNA hybrids in human pluripotent stem cells. We demonstrate that m6A-containing R-loops accumulate during G2/M and are depleted at G0/G1 phases of the cell cycle, and that the m6A reader promoting mRNA degradation, YTHDF2 (ref. 7), interacts with R-loop-enriched loci in dividing cells. Consequently, YTHDF2 knockout leads to increased R-loop levels, cell growth retardation and accumulation of ÎłH2AX, a marker for DNA double-strand breaks, in mammalian cells. Our results suggest that m6A regulates accumulation of R-loops, implying a role for this modification in safeguarding genomic stability

    N6-methyladenosine regulates the stability of RNA:DNA hybrids in human cells.

    No full text
    R-loops are nucleic acid structures formed by an RNA:DNA hybrid and unpaired single-stranded DNA that represent a source of genomic instability in mammalian cells1,2,3,4. Here we show that N6-methyladenosine (m6A) modification, contributing to different aspects of messenger RNA metabolism5,6, is detectable on the majority of RNA:DNA hybrids in human pluripotent stem cells. We demonstrate that m6A-containing R-loops accumulate during G2/M and are depleted at G0/G1 phases of the cell cycle, and that the m6A reader promoting mRNA degradation, YTHDF2 (ref. 7), interacts with R-loop-enriched loci in dividing cells. Consequently, YTHDF2 knockout leads to increased R-loop levels, cell growth retardation and accumulation of ÎłH2AX, a marker for DNA double-strand breaks, in mammalian cells. Our results suggest that m6A regulates accumulation of R-loops, implying a role for this modification in safeguarding genomic stability

    Visualization of the spatial positioning of the SNRPN

    Get PDF
    The three-dimensional (3D) structure of the genome is organized non-randomly and plays a role in genomic function via epigenetic mechanisms in the eukaryotic nucleus. Here, we analyzed the spatial positioning of three target regions; the SNRPN, UBE3A, and GABRB3 genes on human chromosome 15q11.2–q12, a representative cluster of imprinted regions, in the interphase nuclei of B lymphoblastoid cell lines, peripheral blood cells, and skin fibroblasts derived from normal individuals to look for evidence of genomic organization and function. The positions of these genes were simultaneously visualized, and all inter-gene distances were calculated for each homologous chromosome in each nucleus after three-color 3D fluorescence in situ hybridization. None of the target genes were arranged linearly in most cells analyzed, and GABRB3 was positioned closer to SNRPN than UBE3A in a high proportion of cells in all cell types. This was in contrast to the genomic map in which GABRB3 was positioned closer to UBE3A than SNRPN. We compared the distances from SNRPN to UBE3A (SU) and from UBE3A to GABRB3 (UG) between alleles in each nucleus, 50 cells per subject. The results revealed that the gene-to-gene distance of one allele was longer than that of the other and that the SU ratio (longer/shorter SU distance between alleles) was larger than the UG ratio (longer/shorter UG distance between alleles). The UG distance was relatively stable between alleles; in contrast, the SU distance of one allele was obviously longer than the distance indicated by the genome size. The results therefore indicate that SNRPN, UBE3A, and GABRB3 have non-linear and non-random curved spatial positioning in the normal nucleus, with differences in the SU distance between alleles possibly representing epigenetic evidence of nuclear organization and gene expression. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10577-012-9300-5) contains supplementary material, which is available to authorized users
    corecore