547 research outputs found

    Operational approach to open dynamics and quantifying initial correlations

    Get PDF
    A central aim of physics is to describe the dynamics of physical systems. Schrodinger's equation does this for isolated quantum systems. Describing the time evolution of a quantum system that interacts with its environment, in its most general form, has proved to be difficult because the dynamics is dependent on the state of the environment and the correlations with it. For discrete processes, such as quantum gates or chemical reactions, quantum process tomography provides the complete description of the dynamics, provided that the initial states of the system and the environment are independent of each other. However, many physical systems are correlated with the environment at the beginning of the experiment. Here, we give a prescription of quantum process tomography that yields the complete description of the dynamics of the system even when the initial correlations are present. Surprisingly, our method also gives quantitative expressions for the initial correlation.Comment: Completely re-written for clarity of presentation. 15 pages and 2 figure

    Recommendations for exercise adherence measures in musculoskeletal settings : a systematic review and consensus meeting (protocol)

    Get PDF
    Background: Exercise programmes are frequently advocated for the management of musculoskeletal disorders; however, adherence is an important pre-requisite for their success. The assessment of exercise adherence requires the use of relevant and appropriate measures, but guidance for appropriate assessment does not exist. This research will identify and evaluate the quality and acceptability of all measures used to assess exercise adherence within a musculoskeletal setting, seeking to reach consensus for the most relevant and appropriate measures for application in research and/or clinical practice settings. Methods/design: There are two key stages to the proposed research. First, a systematic review of the quality and acceptability of measures used to assess exercise adherence in musculoskeletal disorders; second, a consensus meeting. The systematic review will be conducted in two phases and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to ensure a robust methodology. Phase one will identify all measures that have been used to assess exercise adherence in a musculoskeletal setting. Phase two will seek to identify published and unpublished evidence of the measurement and practical properties of identified measures. Study quality will be assessed against the COnsensus-based Standards for the selection of health Measurement Instruments (COSMIN) guidelines. A shortlist of best quality measures will be produced for consideration during stage two: a meeting of relevant stakeholders in the United Kingdom during which consensus on the most relevant and appropriate measures of exercise adherence for application in research and/or clinical practice settings will be sought. Discussion: This study will benefit clinicians who seek to evaluate patients’ levels of exercise adherence and those intending to undertake research, service evaluation, or audit relating to exercise adherence in the musculoskeletal field. The findings will impact upon new research studies which aim to understand the factors that predict adherence with exercise and which test different adherence-enhancing interventions. PROSPERO reference: CRD4201300621

    CAV3 mutations causing exercise intolerance, myalgia and rhabdomyolysis: expanding the phenotypic spectrum of caveolinopathies

    Get PDF
    Rhabdomyolysis is often due to a combination of environmental trigger(s) and genetic predisposition; however, the underlying genetic cause remains elusive in many cases. Mutations in CAV3 lead to various neuromuscular phenotypes with partial overlap, including limb girdle muscular dystrophy type 1C (LGMD1C), rippling muscle disease, distal myopathy and isolated hyperCKemia. Here we present a series of eight patients from seven families presenting with exercise intolerance and rhabdomyolysis caused by mutations in CAV3 diagnosed by next generation sequencing (NGS) (n=6). Symptoms included myalgia (n=7), exercise intolerance (n=6) and episodes of rhabdomyolysis (n=2). Percussion-induced rapid muscle contractions (PIRCs) were seen in five out of six patients examined. A previously reported heterozygous mutation in CAV3 (p.T78M) and three novel variants (p.V14I, p.F41S, p.F54V) were identified. Caveolin-3 immunolabeling in muscle was normal in 3/4 patients however, immunoblotting showed more than 50% reduction of caveolin-3 in five patients compared with controls. This case series demonstrates that exercise intolerance, myalgia and rhabdomyolysis may be caused by CAV3 mutations and broadens the phenotypic spectrum of caveolinopathies. In our series immunoblotting was a more sensitive method to detect reduced caveolin-3 levels than immunohistochemistry in skeletal muscle. Patients presenting with muscle pain, exercise intolerance and rhabdomyolysis should be routinely tested for PIRCs as this may be an important clinical clue for caveolinopathies, even in the absence of other “typical” features. The use of NGS may expand current knowledge concerning inherited diseases, and unexpected/atypical phenotypes may be attributed to well-known human disease genes

    Modeling the clonal heterogeneity of stem cells

    Get PDF
    Recent experimental studies suggest that tissue stem cell pools are composed of functionally diverse clones. Metapopulation models in ecology concentrate on collections of populations and their role in stabilizing coexistence and maintaining selected genetic or epigenetic variation. Such models are characterized by expansion and extinction of spatially distributed populations. We develop a mathematical framework derived from the multispecies metapopulation model of Tilman et al (1994) to study the dynamics of heterogeneous stem cell metapopulations. In addition to normal stem cells, the model can be applied to cancer cell populations and their response to treatment. In our model disturbances may lead to expansion or contraction of cells with distinct properties, reflecting proliferation, apoptosis, and clonal competition. We first present closed-form expressions for the basic model which defines clonal dynamics in the presence of exogenous global disturbances. We then extend the model to include disturbances which are periodic and which may affect clones differently. Within the model framework, we propose a method to devise an optimal strategy of treatments to regulate expansion, contraction, or mutual maintenance of cells with specific properties

    Chronic non-specific low back pain - sub-groups or a single mechanism?

    Get PDF
    Copyright 2008 Wand and O'Connell; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Low back pain is a substantial health problem and has subsequently attracted a considerable amount of research. Clinical trials evaluating the efficacy of a variety of interventions for chronic non-specific low back pain indicate limited effectiveness for most commonly applied interventions and approaches. Discussion: Many clinicians challenge the results of clinical trials as they feel that this lack of effectiveness is at odds with their clinical experience of managing patients with back pain. A common explanation for this discrepancy is the perceived heterogeneity of patients with chronic non-specific low back pain. It is felt that the effects of treatment may be diluted by the application of a single intervention to a complex, heterogeneous group with diverse treatment needs. This argument presupposes that current treatment is effective when applied to the correct patient. An alternative perspective is that the clinical trials are correct and current treatments have limited efficacy. Preoccupation with sub-grouping may stifle engagement with this view and it is important that the sub-grouping paradigm is closely examined. This paper argues that there are numerous problems with the sub-grouping approach and that it may not be an important reason for the disappointing results of clinical trials. We propose instead that current treatment may be ineffective because it has been misdirected. Recent evidence that demonstrates changes within the brain in chronic low back pain sufferers raises the possibility that persistent back pain may be a problem of cortical reorganisation and degeneration. This perspective offers interesting insights into the chronic low back pain experience and suggests alternative models of intervention. Summary: The disappointing results of clinical research are commonly explained by the failure of researchers to adequately attend to sub-grouping of the chronic non-specific low back pain population. Alternatively, current approaches may be ineffective and clinicians and researchers may need to radically rethink the nature of the problem and how it should best be managed

    Relationship between nano-architectured Ti1−xCux thin film and electrical resistivity for resistance temperature detectors

    Get PDF
    Ti1−xCux thin films were produced by the glancing angle deposition technique (GLAD) for resistance temperature measurements. The deposition angle was fixed at α = 0° to growth columnar structures and α = 45° to growth zigzag structures. The Ti-to-Cu atomic concentration was tuned from 0 to 100 at.% of Cu in order to optimize the temperature coefficient of resistance (TCR) value. Increasing the amount of Cu in the Ti1−xCux thin films, the electrical conductivity was gradually changed from 4.35 to 7.87 × 105 Ω−1 m−1. After thermal “stabilization,” the zigzag structures of Ti1−xCux films induce strong variation of the thermosensitive response of the materials and exhibited a reversible resistivity versus temperature between 35 and 200 °C. The results reveal that the microstructure has an evident influence on the overall response of the films, leading to values of TCR of 8.73 × 10−3 °C−1 for pure copper films and of 4.38 × 10−3 °C−1 for a films of composition Ti0.49Cu0.51. These values are very close to the ones reported for the bulk platinum (3.93 × 10−3 °C−1), which is known to be one of the best material available for these kind of temperature-related applications. The non-existence of hysteresis in the electrical response of consecutive heating and cooling steps indicates the viability of these nanostructured zigzag materials to be used as thermosensitive sensors.Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2013 and Project PTDC/EEI-SII/5582/2014. A. Ferreira and C. Lopes thanks the FCT for Grant SFRH/BPD/102402/2014 and SFRH/BD/103373/2014. The authors thank financial support from the Basque Government Industry Department under the ELKARTEK Programinfo:eu-repo/semantics/publishedVersio

    Significant association of SREBP-2 genetic polymorphisms with avascular necrosis in the Korean population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is known that steroid usage and alcohol abuse are major etiological factors in the development of avascular necrosis (AVN), a bone disease that produces osteonecrosis of the femoral head. The facilitation of fat biosynthesis by steroids and alcohol disrupts the blood supply into the femoral head. <it>SREBP-2 </it>plays a central role in the maintenance of lipid homeostasis through stimulating expression of genes associated with cholesterol biosynthetic pathways. The aim of this study was to examine the association between the polymorphisms of the <it>SREBP-2 </it>gene and AVN susceptibility in the Korean population.</p> <p>Methods</p> <p>Four single nucleotide polymorphisms (SNP) in the <it>SREBP-2 </it>gene, IVS1+8408 T>C (rs2267439), IVS3-342 G>T (rs2269657), IVS11+414 G>A (rs1052717) and IVS12-1667 G>A (rs2267443), were selected from public databases and genotyped in 443 AVN patients and 273 control subjects by using single-based extension (SBE) genotyping.</p> <p>Results</p> <p>The minor allele (C) frequency of rs2267439 showed a significant protective effect on AVN (P = 0.01, OR; 0.75, 95% CI; 0.604–0.935), and the genotype frequencies of this polymorphism were also different from the controls in all alternative analysis models (P range, 0.009–0.03, OR; 0.647–0.744). In contrast, rs1052717 and rs2267443 polymorphisms were significantly associated with AVN risk. Further analysis based on pathological etiology showed that the genotypes of rs2267439, rs1052717 and rs2267443 were also significantly associated with AVN susceptibility in each subgroup.</p> <p>Conclusion</p> <p>This study is the first report to evaluate the association between <it>SREBP-2 </it>gene polymorphisms and the susceptibility of AVN in the Korean population.</p

    Quantum Process Tomography of a Universal Entangling Gate Implemented with Josephson Phase Qubits

    Full text link
    Quantum logic gates must perform properly when operating on their standard input basis states, as well as when operating on complex superpositions of these states. Experiments using superconducting qubits have validated the truth table for particular implementations of e.g. the controlled-NOT gate [1,2], but have not fully characterized gate operation for arbitrary superpositions of input states. Here we demonstrate the use of quantum process tomography (QPT) [3,4] to fully characterize the performance of a universal entangling gate between two superconducting quantum bits. Process tomography permits complete gate analysis, but requires precise preparation of arbitrary input states, control over the subsequent qubit interaction, and simultaneous single-shot measurement of the output states. We use QPT to measure the fidelity of the entangling gate and to quantify the decoherence mechanisms affecting the gate performance. In addition to demonstrating a promising fidelity, our entangling gate has a on/off ratio of 300, a level of adjustable coupling that will become a requirement for future high-fidelity devices. This is the first solid-state demonstration of QPT in a two-qubit system, as solid-state process tomography has previously only been demonstrated with single qubits [5,6]
    • 

    corecore