1,144 research outputs found
The glyoxal budget and its contribution to organic aerosol for Los Angeles, California, during CalNex 2010
Recent laboratory and field studies have indicated that glyoxal is a potentially large contributor to secondary organic aerosol mass. We present in situ glyoxal measurements acquired with a recently developed, high sensitivity spectroscopic instrument during the CalNex 2010 field campaign in Pasadena, California. We use three methods to quantify the production and loss of glyoxal in Los Angeles and its contribution to organic aerosol. First, we calculate the difference between steady state sources and sinks of glyoxal at the Pasadena site, assuming that the remainder is available for aerosol uptake. Second, we use the Master Chemical Mechanism to construct a two-dimensional model for gas-phase glyoxal chemistry in Los Angeles, assuming that the difference between the modeled and measured glyoxal concentration is available for aerosol uptake. Third, we examine the nighttime loss of glyoxal in the absence of its photochemical sources and sinks. Using these methods we constrain the glyoxal loss to aerosol to be 0-5 Ă 10-5 s-1 during clear days and (1 ± 0.3) Ă 10-5 s-1 at night. Between 07:00-15:00 local time, the diurnally averaged secondary organic aerosol mass increases from 3.2 ÎŒg m-3 to a maximum of 8.8 ÎŒg m -3. The constraints on the glyoxal budget from this analysis indicate that it contributes 0-0.2 ÎŒg m-3 or 0-4% of the secondary organic aerosol mass. Copyright 2011 by the American Geophysical Union
A Collective Breaking of R-Parity
Supersymmetric theories with an R-parity generally yield a striking missing
energy signature, with cascade decays concluding in a neutralino that escapes
the detector. In theories where R-parity is broken the missing energy is
replaced with additional jets or leptons, often making traditional search
strategies ineffective. Such R-parity violation is very constrained, however,
by resulting B and L violating signals, requiring couplings so small that LSPs
will decay outside the detector in all but a few scenarios. In theories with
additional matter fields, R-parity can be broken collectively, such that
R-parity is not broken by any single coupling, but only by an ensemble of
couplings. Cascade decays can proceed normally, with each step only sensitive
to one or two couplings at a time, but B and L violation requires the full set,
yielding a highly suppressed constraint. s-channel production of new scalar
states, typically small for standard RPV, can be large when RPV is broken
collectively. While missing energy is absent, making these models difficult to
discover by traditional SUSY searches, they produce complicated many object
resonances (MORes), with many different possible numbers of jets and leptons.
We outline a simple model and discuss its discoverability at the LHC.Comment: 28 pages, 10 figure
Flavor Violating Higgs Decays
We study a class of nonstandard interactions of the newly discovered 125 GeV
Higgs-like resonance that are especially interesting probes of new physics:
flavor violating Higgs couplings to leptons and quarks. These interaction can
arise in many frameworks of new physics at the electroweak scale such as two
Higgs doublet models, extra dimensions, or models of compositeness. We rederive
constraints on flavor violating Higgs couplings using data on rare decays,
electric and magnetic dipole moments, and meson oscillations. We confirm that
flavor violating Higgs boson decays to leptons can be sizeable with, e.g., h ->
tau mu and h -> tau e branching ratios of order 10% perfectly allowed by low
energy constraints. We estimate the current LHC limits on h -> tau mu and h ->
tau e decays by recasting existing searches for the SM Higgs in the tau-tau
channel and find that these bounds are already stronger than those from rare
tau decays. We also show that these limits can be improved significantly with
dedicated searches and we outline a possible search strategy. Flavor violating
Higgs decays therefore present an opportunity for discovery of new physics
which in some cases may be easier to access experimentally than flavor
conserving deviations from the Standard Model Higgs framework.Comment: 39 pages, 12 figures, 3 tables; v2: Improved referencing, updated mu
-> 3e bounds to include large loop contributions, corrected single top
constraints; conclusions unchanged; matches version to be published in JHEP;
v3: included 2-loop contributions in mu -> e conversion, improved discussion
of tau -> 3 mu and of EDM constraints on FV top-Higgs couplings; conclusions
unchange
Phenomenology of Minimal Unified Tree Level Gauge Mediation at the LHC
We study the collider phenomenology of the minimal unified version of the supersymmetry breaking scheme called Tree-level Gauge Mediation. We identify a peculiar source of gaugino mass non-universality related to the necessary SU(5)-breaking in the light fermion mass ratios and a gaugino mass sum rule at the GUT scale, 3 M_2 + 2 M_3 = 5 M_1, which represents a smoking gun of this scenario, together with the known tree-level sfermion mass ratio \tilde m_{d^c,l} = \sqrt{2} \tilde m_{q,u^c,e^c}. The boundary conditions of the soft SUSY breaking terms can be parameterised in terms of six relevant parameters only (plus the sign of the \mu-parameter). We analyze the parameter space and define three benchmark points, corresponding to the three possible NLSPs, a bino- or wino-like neutralino or the stau. The LSP is the gravitino as in gauge mediation. For these benchmark points we show possible signatures at the LHC focusing on the Razor variable. We also comment on the Higgs mass
Recommended from our members
Ozone depletion events observed in the high latitude surface layer during the TOPSE aircraft program
During the Tropospheric Ozone Production about the Spring Equinox (TOPSE) aircraft program, ozone depletion events (ODEs) in the high latitude surface layer were investigated using lidar and in situ instruments. Flight legs of 100 km or longer distance were flown 32 times at 30 m altitude over a variety of regions north of 58° between early February and late May 2000. ODEs were found on each flight over the Arctic Ocean but their occurrence was rare at more southern latitudes. However, large area events with depletion to over 2 km altitude in one case were found as far south as Baffin Bay and Hudson Bay and as late as 22 May. There is good evidence that these more southern events did not form in situ but were the result of export of ozoneâdepleted air from the surface layer of the Arctic Ocean. Surprisingly, relatively intact transport of ODEs occurred over distances of 900â2000 km and in some cases over rough terrain. Accumulation of constituents in the frozen surface over the dark winter period cannot be a strong prerequisite of ozone depletion since latitudes south of the Arctic Ocean would also experience a long dark period. Some process unique to the Arctic Ocean surface or its coastal regions remains unidentified for the release of ozoneâdepleting halogens. There was no correspondence between coarse surface features such as solid ice/snow, open leads, or polynyas with the occurrence of or intensity of ozone depletion over the Arctic or subarctic regions. Depletion events also occurred in the absence of longârange transport of relatively fresh âpollutionâ within the high latitude surface layer, at least in spring 2000. Direct measurements of halogen radicals were not made. However, the flights do provide detailed information on the vertical structure of the surface layer and, during the constant 30 m altitude legs, measurements of a variety of constituents including hydroxyl and peroxy radicals. A summary of the behavior of these constituents is made. The measurements were consistent with a source of formaldehyde from the snow/ice surface. Median NOx in the surface layer was 15 pptv or less, suggesting that surface emissions were substantially converted to reservoir constituents by 30 m altitude and that ozone production rates were small (0.15â1.5 ppbv/d) at this altitude. Peroxyacetylnitrate (PAN) was by far the major constituent of NOy in the surface layer independent of the ozone mixing ratio
A Complete Model of Low-Scale Gauge Mediation
Recent signs of a Standard Model-like Higgs at 125 GeV point towards large
A-terms in the MSSM. This presents special challenges for gauge mediation,
which by itself predicts vanishing A-terms at the messenger scale. In this
paper, we review the general problems that arise when extending gauge mediation
to achieve large A-terms, and the mechanisms that exist to overcome them. Using
these mechanisms, we construct weakly-coupled models of low-scale gauge
mediation with extended Higgs-messenger couplings that generate large A-terms
at the messenger scale and viable mu/B_mu-terms. Our models are simple,
economical, and complete realizations of supersymmetry at the weak scale.Comment: 33 pages; v2: refs added, minor change
What is the role of imaging in acute low back pain?
In patients with non specific acute low back pain, without the red flags, a conservative approach is preferable, with assessment in 4â6Â weeks. The natural history of low back pain is favorable with improvement over time, thus reassurance to such patients is very important. However, a plain radiograph or more advanced imaging techniques like MRI/CT may be ordered in back pain associated with radiculopathy or spinal stenosis and back pain associated with progressive neurologic deficits. There is limited role of imaging in non specific acute low back pain without the red flags, as the findings correlate poorly with symptoms
Properties of 125 GeV Higgs boson in non-decoupling MSSM scenarios
Tantalizing hints of the Higgs boson of mass around 125 GeV have been
reported at the LHC. We explore the MSSM parameter space in which the 125 GeV
state is identified as the heavier of the CP even Higgs bosons, and study two
scenarios where the two photon production rate can be significantly larger than
the standard model (SM). In one scenario, is
enhanced by a light stau contribution, while the () rate
stays around the SM rate. In the other scenario, is
suppressed and not only the but also the
() rates should be enhanced. The rate can be
significantly larger or smaller than the SM rate in both scenarios. Other
common features of the scenarios include top quark decays into charged Higgs
boson, single and pair production of all Higgs bosons in collisions at
GeV.Comment: 20 pages, 5 figures, accepted version for publication in JHE
Naturalness of the Non-Universal MSSM in the light of the recent Higgs results
We analyse the naturalness of the Minimal Supersymmetric Standard Model
(MSSM) in the light of recent LHC results from the ATLAS and CMS experiments.
We study non-universal boundary conditions for the scalar and the gaugino
sector, with fixed relations between some of the soft breaking parameters, and
find a significant reduction of fine-tuning for non-universal gaugino masses.
For a Higgs mass of about 125 GeV, as observed recently, we find parameter
regions with a fine-tuning of O(10), taking into account experimental and
theoretical uncertainties. These regions also survive after comparison with
simplified model searches in ATLAS and CMS. For a fine-tuning less than 20 the
lightest neutralino is expected to be lighter than about 400 GeV and the
lighter stop can be as heavy as 3.5 TeV. On the other hand, the gluino mass is
required to be above 1.5 TeV. For non-universal gaugino masses, we discuss
which fixed GUT scale ratios can lead to a reduced fine-tuning and find that
the recent Higgs results have a strong impact on which ratio is favoured. We
also discuss the naturalness of GUT scale Yukawa relations, comparing the
non-universal MSSM with the CMSSM.Comment: 24 pages, 8 figures; version accepted for publication in JHE
- âŠ