78 research outputs found
The use of orbitals and full spectra to identify misalignment
In this paper, a SpectraQuest demonstrator is used to introduce misalignment in a rotating set-up. The vibrations caused by misalignment is measured with both accelerometers on the bearings and eddy current probes on the shaft itself. A comparison is made between the classical spectral analysis, orbitals and full spectra. Orbitals are used to explain the physical interpretation of the vibration caused by misalignment. Full spectra allow to distinguish unbalance from misalignment by looking at the forward and reversed phenomena. This analysis is done for different kinds of misalignment, couplings, excitation forces and combined machinery faults
Transdermal uptake of diethyl phthalate and di(n-butyl) phthalate directly from air: Experimental verification
Background: Fundamental considerations indicate that, for certain phthalate esters, dermal absorption from air is an uptake pathway that is comparable to or larger than inhalation. Yet this pathway has not been experimentally evaluated and has been largely overlooked when assessing uptake of phthalate esters. Objectives: This study investigated transdermal uptake, directly from air, of diethyl phthalate (DEP) and di(n-butyl) phthalate (DnBP) in humans. Methods: In a series of experiments, six human participants were exposed for six hours in a chamber containing deliberately elevated air concentrations of DEP and DnBP. The participants either wore a hood and breathed air with phthalate concentrations substantially below those in the chamber or did not wear a hood and breathed chamber air. All urinations were collected from initiation of exposure until 54 hours later. Metabolites of DEP and DnBP were measured in these samples and extrapolated to parent phthalate intakes, corrected for background and hood air exposures. Results: For DEP the median dermal uptake directly from air was 4.0 µg/(µg/m3 in air) compared with an inhalation intake of 3.8 µg/(µg/m3 in air). For DnBP the median dermal uptake from air was 3.1 µg/(µg/m3 in air) compared with an inhalation intake of 3.9 µg/(µg/m3 in air). Conclusions: This study shows that dermal uptake directly from air can be a meaningful exposure pathway for DEP and DnBP. For other semivolatile organic compounds (SVOCs) whose molecular weight and Kow are in the appropriate range, direct absorption from air is also anticipated to be significant
Linking a dermal permeation and an inhalation model to a simple pharmacokinetic model to study airborne exposure to di(n-butyl) phthalate
Six males clad only in shorts were exposed to high levels of airborne di(n-butyl) phthalate (DnBP) and diethyl phthalate (DEP) in chamber experiments conducted in 2014. In two 6 h sessions, the subjects were exposed only dermally while breathing clean air from a hood, and both dermally and via inhalation when exposed without a hood. Full urine samples were taken before, during, and for 48 h after leaving the chamber and measured for key DnBP and DEP metabolites. The data clearly demonstrated high levels of DnBP and DEP metabolite excretions while in the chamber and during the first 24 h once leaving the chamber under both conditions. The data for DnBP were used in a modeling exercise linking dose models for inhalation and transdermal permeation with a simple pharmacokinetic model that predicted timing and mass of metabolite excretions. These models were developed and calibrated independent of these experiments. Tests included modeling of the “hood-on” (transdermal penetration only), “hood-off” (both inhalation and transdermal) scenarios, and a derived “inhalation-only” scenario. Results showed that the linked model tended to duplicate the pattern of excretion with regard to timing of peaks, decline of concentrations over time, and the ratio of DnBP metabolites. However, the transdermal model tended to overpredict penetration of DnBP such that predictions of metabolite excretions were between 1.1 and 4.5 times higher than the cumulative excretion of DnBP metabolites over the 54 h of the simulation. A similar overprediction was not seen for the “inhalation-only” simulations. Possible explanations and model refinements for these overpredictions are discussed. In a demonstration of the linked model designed to characterize general population exposures to typical airborne indoor concentrations of DnBP in the United States, it was estimated that up to one-quarter of total exposures could be due to inhalation and dermal uptake
The Cyprinodon variegatus genome reveals gene expression changes underlying differences in skull morphology among closely related species
Genes in durophage intersection set at 15 dpf. This is a comma separated table of the genes in the 15 dpf durophage intersection set. Given are edgeR results for each pairwise comparison. Columns indicating whether a gene is included in the intersection set at a threshold of 1.5 or 2 fold are provided. (CSV 13Â kb
Zebrafish con/disp1 reveals multiple spatiotemporal requirements for Hedgehog-signaling in craniofacial development
<p>Abstract</p> <p>Background</p> <p>The vertebrate head skeleton is derived largely from cranial neural crest cells (CNCC). Genetic studies in zebrafish and mice have established that the Hedgehog (Hh)-signaling pathway plays a critical role in craniofacial development, partly due to the pathway's role in CNCC development. Disruption of the Hh-signaling pathway in humans can lead to the spectral disorder of Holoprosencephaly (HPE), which is often characterized by a variety of craniofacial defects including midline facial clefting and cyclopia <abbrgrp><abbr bid="B1">1</abbr><abbr bid="B2">2</abbr></abbrgrp>. Previous work has uncovered a role for Hh-signaling in zebrafish dorsal neurocranium patterning and chondrogenesis, however Hh-signaling mutants have not been described with respect to the ventral pharyngeal arch (PA) skeleton. Lipid-modified Hh-ligands require the transmembrane-spanning receptor Dispatched 1 (Disp1) for proper secretion from Hh-synthesizing cells to the extracellular field where they act on target cells. Here we study <it>chameleon </it>mutants, lacking a functional <it>disp1</it>(<it>con/disp1</it>).</p> <p>Results</p> <p><it>con/disp1 </it>mutants display reduced and dysmorphic mandibular and hyoid arch cartilages and lack all ceratobranchial cartilage elements. CNCC specification and migration into the PA primorida occurs normally in <it>con/disp1 </it>mutants, however <it>disp1 </it>is necessary for post-migratory CNCC patterning and differentiation. We show that <it>disp1 </it>is required for post-migratory CNCC to become properly patterned within the first arch, while the gene is dispensable for CNCC condensation and patterning in more posterior arches. Upon residing in well-formed pharyngeal epithelium, neural crest condensations in the posterior PA fail to maintain expression of two transcription factors essential for chondrogenesis, <it>sox9a </it>and <it>dlx2a</it>, yet continue to robustly express other neural crest markers. Histology reveals that posterior arch residing-CNCC differentiate into fibrous-connective tissue, rather than becoming chondrocytes. Treatments with Cyclopamine, to inhibit Hh-signaling at different developmental stages, show that Hh-signaling is required during gastrulation for normal patterning of CNCC in the first PA, and then during the late pharyngula stage, to promote CNCC chondrogenesis within the posterior arches. Further, loss of <it>disp1 </it>disrupted normal expression of <it>bapx1 </it>and <it>gdf5</it>, markers of jaw joint patterning, thus resulting in jaw joint defects in <it>con/disp1 </it>mutant animals.</p> <p>Conclusion</p> <p>This study reveals novel requirements for Hh-signaling in the zebrafish PA skeleton and highlights the functional diversity and differential sensitivity of craniofacial tissues to Hh-signaling throughout the face, a finding that may help to explain the spectrum of human facial phenotypes characteristic of HPE.</p
The influence of hydrological regimes on sex ratios and spatial segregation of the sexes in two dioecious riparian shrub species in northern Sweden
River management practices have altered the hydrological regimes of many rivers and also altered the availability of regeneration niches for riparian species. We investigated the impact of changed hydrological regimes on the sex ratios and the Spatial Segregation of the Sexes (SSS) in the dioecious species Salix myrsinifolia Salisb.–phylicifolia L. and S. lapponum L. by studying the free-flowing Vindel River and the regulated Ume River in northern Sweden. We surveyed sex ratios of these species in 12 river reaches on the Vindel River and in 17 reaches on the Ume River. In addition, we surveyed the sex and location above mean river stage of 1,002 individuals across both river systems to investigate the SSS of both species. Cuttings were collected from male and female individuals of S. myrsinifolia–phylicifolia from both rivers and subjected to four different water table regimes in a greenhouse experiment to investigate growth response between the sexes. We found an M/F sex ratio in both river systems similar to the regional norm of 0.62 for S. myrsinifolia–phylicifolia and of 0.42 for S. lapponum. We found no evidence of SSS in either the free-flowing Vindel River or the regulated Ume River. In the greenhouse experiment, hydrological regime had a significant effect on shoot and root dry weight and on root length. Significantly higher shoot dry weights were found in females than in males and significantly different shoot and root dry weights were found between cuttings taken from the two rivers. We concluded that changed hydrological regimes are likely to alter dimensions of the regeneration niche and therefore to influence sex ratios and SSS at an early successional stage, making it difficult to find clear spatial patterns once these species reach maturity and can be sexed
Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production
Additional file 15. Summary of whole genome sequencing statistics
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
- …