62 research outputs found

    Hydrogeological typologies of the Indo-Gangetic basin alluvial aquifer, South Asia

    Get PDF
    The Indo-Gangetic aquifer is one of the worldā€™s most important transboundary water resources, and the most heavily exploited aquifer in the world. To better understand the aquifer system, typologies have been characterized for the aquifer, which integrate existing datasets across the Indo-Gangetic catchment basin at a transboundary scale for the first time, and provide an alternative conceptualization of this aquifer system. Traditionally considered and mapped as a single homogenous aquifer of comparable aquifer properties and groundwater resource at a transboundary scale, the typologies illuminate significant spatial differences in recharge, permeability, storage, and groundwater chemistry across the aquifer system at this transboundary scale. These changes are shown to be systematic, concurrent with large-scale changes in sedimentology of the Pleistocene and Holocene alluvial aquifer, climate, and recent irrigation practices. Seven typologies of the aquifer are presented, each having a distinct set of challenges and opportunities for groundwater development and a different resilience to abstraction and climate change. The seven typologies are: (1) the piedmont margin, (2) the Upper Indus and Upper-Mid Ganges, (3) the Lower Ganges and Mid Brahmaputra, (4) the fluvially influenced deltaic area of the Bengal Basin, (5) the Middle Indus and Upper Ganges, (6) the Lower Indus, and (7) the marine-influenced deltaic areas

    Characterization and Quantification of Vortex Flow in the Human Left Ventricle by Contrast Echocardiography Using Vector Particle Image Velocimetry.

    No full text
    The aims of this study were to: 1) assess the feasibility of left ventricular (LV) vortex flow analysis using contrast echocardiography (CE); and 2) characterize and quantify LV vortex flow in normal subjects and patients with LV systolic dysfunction. Vortices that form during LV filling have specific geometry and anatomical locations that are critical determinants of directed blood flow during ejection. Therefore, it is clinically relevant to assess the vortex flow patterns to better understand the LV function. Twenty-five patients (10 normal and 15 patients with abnormal LV systolic function) underwent CE with intravenous contrast agent, Definity (Bristol-Myers Squibb Medical Imaging, Inc., North Billerica, Massachusetts). The velocity vector and vorticity were estimated by particle image velocimetry. Average vortex parameters including vortex depth, transverse position, length, width, and sphericity index were measured. Vortex pulsatility parameters including relative strength, vortex relative strength, and vortex pulsation correlation were also estimated. Vortex depth and vortex length were significantly lower in the abnormal LV function group. Vortex width was greater and sphericity index was lower in the abnormal LV function group. Relative strength, vortex relative strength, and vortex pulsation correlation were significantly lower in the abnormal LV function group. It was feasible to quantify LV vorticity arrangement by CE using particle image velocimetry in normal subjects and those with LV systolic dysfunction, and the vorticity imaging by CE may serve as a novel approach to depict vortex, the principal quantity to assess the flow structure
    • ā€¦
    corecore