21 research outputs found

    Quantitative analysis of the anterolateral ossification mass in diffuse idiopathic skeletal hyperostosis of the thoracic spine

    Get PDF
    Diffuse idiopathic skeletal hyperostosis (DISH) is a systemic condition leading to ossification of spinal ligaments and has been shown to behave similarly to ankylosing spondylitis (AS) often leading to unstable hyperextension fractures. Currently, no quantitative data are available on the spatial relationship between the bridging anterolateral ossification mass (ALOM) and the vertebral body/intervertebral disc to explain the propensity in DISH to fracture through the vertebral body instead of through the intervertebral disc as more often seen in AS. Furthermore, no reasonable explanation is available for the typical flowing wax morphology observed in DISH. In the current study, a quantitative analysis of computed tomography (CT) data from human cadaveric specimens with DISH was performed to better understand the newly formed osseous structures and fracture biomechanics. Additionally, the results were verified using computed tomography angiography data from ten patients with DISH and ten controls. Transverse CT images were analyzed to obtain ALOM area and centroid angle relative to the anteroposterior axis; intervertebral disc and adjacent cranial and caudal levels. The ALOM area at the mid-vertebral body level averaged 57.9 ± 50.0 mm2; at the mid-intervertebral disc space level it averaged 246.4 ± 95.9 mm2. The mean ALOM area at the adjacent level caudal to the mid-vertebral body level was 169.6 ± 81.3 mm2; at the adjacent cranial level, it was 161.7 ± 78.2 mm2. The main finding was the significant difference between mean ALOM area at the mid-vertebral body level and other three levels (p < 0.0001). The subsequent verification study showed the presence of vertebral segmental arteries at the mid-vertebral body level in nearly all images irrespective of the presence of DISH. A larger area of ALOM seemed associated with increased counter-clockwise rotation (away from the aorta) of the centroid relative to the anteroposterior axis. The results from the present study suggest a predisposition for fractures through the vertebral body and a role for the arterial system in the inhibition of soft tissue ossification

    Toll-like receptor 4 is involved in outward arterial remodeling

    No full text
    Background - Toll-like receptor 4 (Tlr4) is the receptor for exogenous lipopolysaccharides (LPS). Expression of endogenous Tlr4 ligands, heat shock protein 60 (Hsp60) and extra domain A of fibronectin, has been observed in arthritic and oncological specimens in which matrix turnover is an important feature. In atherosclerosis, outward remodeling is characterized by matrix turnover and a structural change in arterial circumference and is associated with a vulnerable plaque phenotype. Since Tlr4 ligands are expressed during matrix turnover, we hypothesized that Tlr4 is involved in arterial remodeling. Methods and Results - In a femoral artery cuff model in the atherosclerotic ApoE3 ( Leiden) transgenic mouse, Tlr4 activation by LPS stimulated plaque formation and subsequent outward arterial remodeling. With the use of the same model in wild-type mice, neointima formation and outward remodeling occurred. In Tlr4-deficient mice, however, no outward arterial remodeling was observed independent of neointima formation. Carotid artery ligation in wild-type mice resulted in outward remodeling without neointima formation in the contralateral artery. This was associated with an increase in Tlr4 expression and EDA and Hsp60 mRNA levels. In contrast, outward remodeling was not observed after carotid ligation in Tlr4-deficient mice. Conclusions - These findings provide genetic evidence that Tlr4 is involved in outward arterial remodeling, probably through upregulation of Tlr4 and Tlr4 ligands

    Diverging Alternative Splicing Fingerprints in the Transforming Growth Factor-β Signaling Pathway Identified in Thoracic Aortic Aneurysms

    No full text
    Impaired regulation of the transforming growth factor-β (TGFβ) signaling pathway has been linked to thoracic aortic aneurysm (TAA). Previous work has indicated that differential splicing is a common phenomenon, potentially influencing the function of proteins. In the present study we investigated the occurrence of differential splicing in the TGFβ pathway associated with TAA in patients with bicuspid aortic valve (BAV) and tricuspid aortic valve (TAV). Affymetrix human exon arrays were applied to 81 intima/media tissue samples from dilated (n = 51) and nondilated (n = 30) aortas of TAV and BAV patients. To analyze the occurrence of alternative splicing in the TGFβ pathway, multivariate techniques, including principal component analysis and OPLS-DA (orthogonal partial least squares to latent structures discriminant analysis), were applied on all exons (n = 614) of the TGFβ pathway. The scores plot, based on the splice index of individual exons, showed separate clusters of patients with both dilated and nondilated aorta, thereby illustrating the potential importance of alternative splicing in TAA. In total, differential splicing was detected in 187 exons. Furthermore, the pattern of alternative splicing is clearly differs between TAV and BAV patients. Differential splicing was specific for BAV and TAV patients in 40 and 86 exons, respectively, and splicings of 61 exons were shared between the two phenotypes. The occurrence of differential splicing was demonstrated in selected genes by reverse transcription–polymerase chain reaction. In summary, alternative splicing is a common feature of TAA formation. Our results suggest that dilatation in TAV and BAV patients has different alternative splicing fingerprints in the TGFβ pathway
    corecore