11 research outputs found
A Systematic Review of Randomized Controlled Trials on the Effectiveness of Computer-Tailored Physical Activity and Dietary Behavior Promotion Programs: an Update
Background A review update is necessary to document evidence regarding the effectiveness of computer-tailored physical activity and nutrition education. Purpose The purpose of this study was to summarize the latest evidence on the effectiveness of computer-tailoredphysical activity and nutrition education, and to compare the results to the 2006 review. Methods Databases were searched for randomized controlled trials evaluating computer-tailored physical activity and nutrition education aimed at primary prevention in adults, published from September 2004 through June 2011. Results Compared to the findings in 2006, a larger proportion of studies found positive effects for computer-tailored programs compared to generic or no information, including those for physical activity promotion. Effect sizes were small and generally at short- or medium-term follow-up. Conclusions The results of the 2006 review were confirmed and reinforced. Future interventions should focus onestablishing larger effect sizes and sustained effects and include more generic health education control groups and objective measurements of dietary behavior. © The Society of Behavioral Medicine 2012
Composition, age, and origin of the ~620 Ma Humr Akarim and Humrat Mukbid A-type granites: no evidence for pre-Neoproterozoic basement in the Eastern Desert, Egypt
The Humr Akarim and Humrat Mukbid plutons, in the central Eastern Desert of Egypt, are late Neoproterozoic post-collisional alkaline A-type granites. Humr Akarim and Humrat Mukbid plutonic rocks consist of subsolvus alkali granites and a subordinate roof facies of albite granite, which hosts greisen and Sn–Mo-mineralized quartz veins; textural and field evidence strongly suggest the presence of late magmatic F-rich fluids. The granites are Si-alkali rich, Mg–Ca–Ti poor with high Rb/Sr (20–123), and low K/Rb (27–65). They are enriched in high field strength elements (e.g., Nb, Ta, Zr, Y, U, Th) and heavy rare earth elements (Lan/Ybn = 0.27–0.95) and exhibit significant tetrad effects in REE patterns. These geochemical attributes indicate that granite trace element distribution was controlled by crystal fractionation as well as interaction with fluorine-rich magmatic fluids. U–Pb SHRIMP zircon dating indicates an age of ~630–620 Ma but with abundant evidence that zircons were affected by late corrosive fluids (e.g., discordance, high common Pb). eNd at 620 Ma ranges from +3.4 to +6.8 (mean = +5.0) for Humr Akarim granitic rocks and from +4.8 to +7.5(mean = +5.8) for Humrat Mukbid granitic rocks. Some slightly older zircons (~740 Ma, 703 Ma) may have been inherited from older granites in the region. Our U–Pb zircon data and Nd isotope results indicate a juvenile magma source of Neoproterozoic age like that responsible for forming most other ANS crust and refute previous conclusions that pre-Neoproterozoic continental crust was involved in the generation of the studied granites