40 research outputs found

    Detecting functional magnetic resonance imaging activation in white matter: Interhemispheric transfer across the corpus callosum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is generally believed that activation in functional magnetic resonance imaging (fMRI) is restricted to gray matter. Despite this, a number of studies have reported white matter activation, particularly when the corpus callosum is targeted using interhemispheric transfer tasks. These findings suggest that fMRI signals may not be neatly confined to gray matter tissue. In the current experiment, 4 T fMRI was employed to evaluate whether it is possible to detect white matter activation. We used an interhemispheric transfer task modelled after neurological studies of callosal disconnection. It was hypothesized that white matter activation could be detected using fMRI.</p> <p>Results</p> <p>Both group and individual data were considered. At liberal statistical thresholds (p < 0.005, uncorrected), group level activation was detected in the isthmus of the corpus callosum. This region connects the superior parietal cortices, which have been implicated previously in interhemispheric transfer. At the individual level, five of the 24 subjects (21%) had activation clusters that were located primarily within the corpus callosum. Consistent with the group results, the clusters of all five subjects were located in posterior callosal regions. The signal time courses for these clusters were comparable to those observed for task related gray matter activation.</p> <p>Conclusion</p> <p>The findings support the idea that, despite the inherent challenges, fMRI activation can be detected in the corpus callosum at the individual level. Future work is needed to determine whether the detection of this activation can be improved by utilizing higher spatial resolution, optimizing acquisition parameters, and analyzing the data with tissue specific models of the hemodynamic response. The ability to detect white matter fMRI activation expands the scope of basic and clinical brain mapping research, and provides a new approach for understanding brain connectivity.</p

    Bioaccumulation and ecotoxicity of carbon nanotubes

    Get PDF
    Carbon nanotubes (CNT) have numerous industrial applications and may be released to the environment. In the aquatic environment, pristine or functionalized CNT have different dispersion behavior, potentially leading to different risks of exposure along the water column. Data included in this review indicate that CNT do not cross biological barriers readily. When internalized, only a minimal fraction of CNT translocate into organism body compartments. The reported CNT toxicity depends on exposure conditions, model organism, CNT-type, dispersion state and concentration. In the ecotoxicological tests, the aquatic organisms were generally found to be more sensitive than terrestrial organisms. Invertebrates were more sensitive than vertebrates. Single-walled CNT were found to be more toxic than double-/multi-walled CNT. Generally, the effect concentrations documented in literature were above current modeled average environmental concentrations. Measurement data are needed for estimation of environmental no-effect concentrations. Future studies with benchmark materials are needed to generate comparable results. Studies have to include better characterization of the starting materials, of the dispersions and of the biological fate, to obtain better knowledge of the exposure/effect relationships

    Anisotropic nanomaterials: structure, growth, assembly, and functions

    Get PDF
    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications

    Birefringent optical element, lcd device with a birefringent optical element, and manufacturing process for a birefringent optical element

    No full text
    \u3cp\u3eA birefringent optical element comprises a polymerized and/or cross-linked mixture (301) of a liquid crystalline compound and a photo-isomerizable compound. The birefringence of the element can be determined with high precision by manipulating the order parameter and polarization anisotropy of said mixture. For this purpose, the photo-isomerizable compound is converted from a trans-form to a cis-form during manufacturing by means of irradiation. Preferably the photo-isomerizable compound is a cinnamate compound. The irradiated mixture is polymerized and/or cross-linked after irradiation. The irradiation preferably takes place through a greyscale mask (305) so that within the mixture (301) portions (302R, 302G, 302B) are defined that obtain different birefringence values. The process is for example suitable for manufacturing a retarder layer or compensation foil inside the liquid crystalline cell of a Liquid Crystal Display (LCD) device, and in particular for manufacturing a patterned retarder layer having portions with different retardation, associated with the primary colors of a color LCD device.\u3c/p\u3

    Prodromal Dementia With Lewy Bodies: Clinical Characterization and Predictors of Progression

    No full text
    Objective: The objective of this study was to examine clinical characteristics, cognitive decline, and predictors for time to dementia in prodromal dementia with Lewy bodies with mild cognitive impairment (MCI‐LB) compared with prodromal Alzheimer's disease (MCI‐AD). / Methods: We included 73 MCI‐LB patients (12% female; 68 ± 6 years; Mini Mental State Examination, 27 ± 2) and 124 MCI‐AD patients (48% female; 68 ± 7 years; Mini Mental State Examination, 27 ± 2) from the Amsterdam Dementia Cohort. Follow‐up was available for 61 MCI‐LB patients and all MCI‐AD patients (3 ± 2 years). We evaluated dementia with Lewy bodies core features, neuropsychiatric symptoms, caregiver burden (Zarit caregiver burden interview), MRI, apolipoprotein genotype, and cerebrospinal fluid biomarkers (tau/Aβ1–42 ratio). Longitudinal outcome measures included cognitive slopes (memory, attention, executive functions, and language and visuospatial functions) and time to dementia. / Results: Parkinsonism was the most frequently present core feature in MCI‐LB (69%). MCI‐LB patients more often had neuropsychiatric symptoms and scored higher on ZARIT when compared with the MCI‐AD patients. Linear mixed models showed that at baseline, MCI‐LB patients performed worse on nonmemory cognitive domains, whereas memory performance was worse in MCI‐AD patients. Over time, MCI‐LB patients declined faster on attention, whereas MCI‐AD patients declined faster on the Mini Mental State Examination and memory. Cox proportional hazards regressions showed that in the MCI‐LB patients, lower attention (hazard ratio [HR] = 1.6; 95% confidence interval [CI], 1.1–2.3) and more posterior cortical atrophy (HR = 3.0; 95% CI, 1.5–5.8) predicted shorter time to dementia. In the MCI‐AD patients, worse performance on memory (HR = 1.1; 95% CI, 1.0–1.2) and executive functions (HR = 1.3; 95% CI, 1.0–1.6) were independently associated with time to Alzheimer's dementia. / Conclusion: MCI‐LB patients have distinct neuropsychiatric and cognitive profiles with prominent decline in attention when compared with MCI‐AD patients. Our results highlight the importance of early diagnosis because symptoms already have an impact in the prodromal stages. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society

    Synthesis, properties, and photopolymerization of liquid-crystalline oxetanes:Application in transflective liquid-crystal displays

    No full text
    \u3cp\u3eMixtures of liquid-crystalline di-oxetanes and mono-oxetanes are made for the purpose of making birefringent films by photopolymerization. The composition of a di-oxetane mixture that forms spin-coated films of planarly aligned nematic monomers is reported. These films are photopolymerized in air. The molecular order of the monomers can be changed on the microscale to form thin films with alternating birefringent and isotropic parts by using a combination of photopolymerization and heating. The interface observed between the birefringent and isotropic 10 μm × 10 μm domains is very sharp and the films show hardly any surface corrugation. In addition, the polymerized films are thermally stable, making them very suitable for use as patterned thin-film retarders in high-performance transflective liquid-crystal displays (LCDs) which satisfy customer demand for displays that are brighter and thinner and that deliver better optical performance than conventional LCDs with an external non-patterned retarder.\u3c/p\u3

    Patterned retarders prepared by photoisomerization and photopolymerization of liquid crystalline films

    No full text
    \u3cp\u3eIsomerizable diacrylates derived from cinnamic acid are designed, synthesized and mixed with liquid crystalline diacrylates with the aim of making films with alternating birefringent and isotropic domains by applying the E - Z isomerization process at room temperature. The effects of the structure of the isomerizable-mesogenic group on the isotropization efficacy, the efficiency of the E - Z isomerization reaction, and film formation are discussed. Compounds derived from cyclohexyl cinnamate are proved to be good candidates that meet a whole set of parameters related to processing and application. These compounds exhibit a low nematic-to-isotropic transition temperature. In addition, they show no yellowing upon irradiation, unlike similar compounds derived from phenyl cinnamate. To elucidate the origin of isotropization of the film by irradiation, the pure Z -isomer is prepared by photolysis of the E -isomer and subsequent chromatographic separation of both isomers. Analysis of reference samples containing the pure isomers reveals that the decrease in transition temperature can be attributed exclusively to the E - Z photoisomerization process. Finally, thin films with alternating birefringent and isotropic parts of 100×100 μm 2 are obtained by using a combination of photoisomerization in air and photopolymerization in a nitrogen atmosphere, which is referred to as photo-patterning.\u3c/p\u3
    corecore