1 research outputs found

    Smooth Pursuit Eye Movements Improve Temporal Resolution for Color Perception

    Get PDF
    Human observers see a single mixed color (yellow) when different colors (red and green) rapidly alternate. Accumulating evidence suggests that the critical temporal frequency beyond which chromatic fusion occurs does not simply reflect the temporal limit of peripheral encoding. However, it remains poorly understood how the central processing controls the fusion frequency. Here we show that the fusion frequency can be elevated by extra-retinal signals during smooth pursuit. This eye movement can keep the image of a moving target in the fovea, but it also introduces a backward retinal sweep of the stationary background pattern. We found that the fusion frequency was higher when retinal color changes were generated by pursuit-induced background motions than when the same retinal color changes were generated by object motions during eye fixation. This temporal improvement cannot be ascribed to a general increase in contrast gain of specific neural mechanisms during pursuit, since the improvement was not observed with a pattern flickering without changing position on the retina or with a pattern moving in the direction opposite to the background motion during pursuit. Our findings indicate that chromatic fusion is controlled by a cortical mechanism that suppresses motion blur. A plausible mechanism is that eye-movement signals change spatiotemporal trajectories along which color signals are integrated so as to reduce chromatic integration at the same locations (i.e., along stationary trajectories) on the retina that normally causes retinal blur during fixation
    corecore