55 research outputs found

    Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms

    Get PDF
    Leukodystrophies are genetically determined disorders characterized by the selective involvement of the central nervous system white matter. Onset may be at any age, from prenatal life to senescence. Many leukodystrophies are degenerative in nature, but some only impair white matter function. The clinical course is mostly progressive, but may also be static or even improving with time. Progressive leukodystrophies are often fatal, and no curative treatment is known. The last decade has witnessed a tremendous increase in the number of defined leukodystrophies also owing to a diagnostic approach combining magnetic resonance imaging pattern recognition and next generation sequencing. Knowledge on white matter physiology and pathology has also dramatically built up. This led to the recognition that only few leukodystrophies are due to mutations in myelin- or oligodendrocyte-specific genes, and many are rather caused by defects in other white matter structural components, including astrocytes, microglia, axons and blood vessels. We here propose a novel classification of leukodystrophies that takes into account the primary involvement of any white matter component. Categories in this classification are the myelin disorders due to a primary defect in oligodendrocytes or myelin (hypomyelinating and demyelinating leukodystrophies, leukodystrophies with myelin vacuolization); astrocytopathies; leuko-axonopathies; microgliopathies; and leuko-vasculopathies. Following this classification, we illustrate the neuropathology and disease mechanisms of some leukodystrophies taken as example for each category. Some leukodystrophies fall into more than one category. Given the complex molecular and cellular interplay underlying white matter pathology, recognition of the cellular pathology behind a disease becomes crucial in addressing possible treatment strategies

    Human plasma protein N-glycosylation

    Full text link

    Oneigenlijk gebruik van de GGZ

    No full text

    Sugammadex reverses neuromuscular block induced by 3-desacetyl-vecuronium, an active metabolite of vecuronium, in the anaesthetised rhesus monkey

    No full text
    Background and objective 3-Desacetyl-vecuronium is an active metabolite of the neuromuscular blocking agent (NMBA) vecuronium, which might lead to residual paralysis after prolonged administration of vecuronium in critically ill patients with renal failure. This study investigated the ability of sugammadex to reverse 3-desacetyl-vecuronium-induced neuromuscular block (NMB) in the anaesthetised rhesus monkey. Methods Experiments were performed in anaesthetised female rhesus monkeys. After bolus intravenous injection of vecuronium (n = 8) or 3-desacetyl-vecuronium (n = 8) 10 mu g kg(-1) (ED(90)), a continuous infusion of the same NMBA was started to maintain the first twitch of the train-of-four (TOF) at 10% of baseline value. The infusion was stopped and NMB recovered spontaneously. The procedure was repeated, but immediately after stopping the infusion, an intravenous bolus dose of sugammadex 0.5 or 1.0 mg kg(-1) was given. For each NMBA, four placebo experiments were performed, in which the second recovery from NMB was also spontaneous. For all experiments, time to recovery of the TOF ratio to 90% was retrieved. Results After administration of sugammadex for reversal of 3-desacetyl-vecuronium-induced NMB, recovery was significantly faster than spontaneous recovery. Mean time to recovery of TOF to 90% was 3.2 min (sugammadex 0.5 mg kg(-1)) and 2.6 min (1.0 mg kg(-1)), compared to spontaneous recovery (17.6 min). For vecuronium-induced NMB, mean time to recovery of TOF to 90% was 17.1 min (0.5 mg kg(-1)) and 4.6 min (1.0 mg kg(-1)), compared to spontaneous recovery (23.4 min). Conclusion Sugammadex rapidly and effectively reversed 3-desacetyl-vecuronium-induced NMB in the rhesus monkey, at a lower dose than that needed to reverse vecuronium-induced NMB. Eur J Anaesthesiol 2011;28:265-272 Published online 14 December 201

    Train-of-four ratio recovery often precedes twitch recovery when neuromuscular block is reversed by sugammadex

    No full text
    Background: Sugammadex reverses rocuronium-induced neuromuscular block (NMB). In all published studies investigating sugammadex, the primary outcome parameter was a train-of-four (TOF) ratio of 0.9. The recovery time of T1 was not described. This retrospective investigation describes the recovery of T1 vs. TOF ratio after the reversal of NMB with sugammadex. Methods: Two studies were analyzed. In study A, a phase II dose-finding study, ASA I-II patients received an intravenous (IV) dose of rocuronium 1.2 mg/kg, followed by an IV dose of sugammadex (2.0, 4.0, 8.0, 12.0 or 16.0 mg/kg) or placebo (0.9% saline) after 5 min. In study B, a phase III trial comparing patients with renal failure and healthy controls, rocuronium 0.6 mg/kg was used to induce NMB; sugammadex 2.0 mg/kg was administered at reappearance of T2. Neuromuscular monitoring was performed by acceleromyography and TOF nerve stimulation. The primary efficacy variable was time from the administration of sugammadex to recovery of the TOF ratio to 0.9. Retrospectively, the time to recovery of T1 to 90% was calculated. Results: After the reversal of rocuronium-induced NMB with an optimal dose of sugammadex [16 mg/kg (A) or 2 mg/kg (B)], the TOF ratio recovered to 0.9 significantly faster than T1 recovered to 90%. Clinical signs of residual paralysis were not observed. Conclusion: After the reversal of NMB by sugammadex, full recovery of the TOF ratio is possible when T1 is still depressed. The TOF ratio as the only measurement for the adequate reversal of NMB by sugammadex may not always be reliable. Further investigations for clinical implications are needed

    Reversal of rocuronium-induced neuromuscular block by sugammadex is independent of renal perfusion in anesthetized cats

    No full text
    Sugammadex is a selective relaxant binding agent designed to encapsulate the aminosteroidal neuromuscular blocking agent rocuronium, thereby reversing its effect. Both sugammadex and the sugammadex-rocuronium complex are eliminated by the kidneys. This study investigated the effect of sugammadex on recovery of rocuronium-induced neuromuscular block in cats with clamped renal pedicles, as a model for acute renal failure. Twelve male cats were divided into two groups and anesthetized with medetomidine, ketamine, and alpha-chloralose. The cats were intubated and ventilated with a mixture of oxygen and air. Neuromuscular monitoring was performed by single twitch monitoring. Rocuronium 0.5 mg/kg i.v. was administered. After spontaneous recovery from neuromuscular block, both renal pedicles were ligated. A second dose of rocuronium 0.5 mg/kg i.v. was given. One minute after disappearance of the twitches, in Group 1 placebo (0.9% saline) and in Group 2 sugammadex 5.0 mg/kg i.v. was administered. Onset time, duration of neuromuscular block, and time to recovery to 25, 50, 75, and 90% were determined. After renal pedicle ligation, sugammadex reversed rocuronium-induced neuromuscular block significantly faster than spontaneous recovery. Mean time (SEM) to 90% recovery of the twitch response was 4.7 (0.25) min (Group 2) versus 31.1 (5.0) min (Group 1) (p < 0.0001). No signs of recurrence of neuromuscular block were observed for 90 min after complete twitch restoration. Sugammadex caused no significant cardiovascular effects. Sugammadex rapidly and effectively reversed rocuronium-induced neuromuscular block in anesthetized cats, even when both renal pedicles were ligated and renal elimination of the drugs was no longer possible
    corecore