9 research outputs found

    Using hospital discharge data for determining neonatal morbidity and mortality: a validation study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite widespread use of neonatal hospital discharge data, there are few published reports on the accuracy of population health data with neonatal diagnostic or procedure codes. The aim of this study was to assess the accuracy of using routinely collected hospital discharge data in identifying neonatal morbidity during the birth admission compared with data from a statewide audit of selected neonatal intensive care (NICU) admissions.</p> <p>Methods</p> <p>Validation study of population-based linked hospital discharge/birth data against neonatal intensive care audit data from New South Wales, Australia for 2,432 babies admitted to NICUs, 1994–1996. Sensitivity, specificity and positive predictive values (PPV) with exact binomial confidence intervals were calculated for 12 diagnoses and 6 procedures.</p> <p>Results</p> <p>Sensitivities ranged from 37.0% for drainage of an air leak to 97.7% for very low birthweight, specificities all exceeded 85% and PPVs ranged from 70.9% to 100%. In-hospital mortality, low birthweight (≤1500 g), retinopathy of prematurity, respiratory distress syndrome, meconium aspiration, pneumonia, pulmonary hypertension, selected major anomalies, any mechanical ventilation (including CPAP), major surgery and surgery for patent ductus arteriosus or necrotizing enterocolitis were accurately identified with PPVs over 92%. Transient tachypnea of the newborn and drainage of an air leak had the lowest PPVs, 70.9% and 83.6% respectively.</p> <p>Conclusion</p> <p>Although under-ascertained, routinely collected hospital discharge data had high PPVs for most validated items and would be suitable for risk factor analyses of neonatal morbidity. Procedures tended to be more accurately recorded than diagnoses.</p

    Membrane orientation of droplets prepared from Chara corallina internodal cells

    No full text
    It is generally accepted that the membrane surrounding droplets from characean cells originates from the tonoplast, but there is some uncertainty regarding droplet membrane sidedness. This issue was addressed directly by combining two different droplet isolation methods and the patch clamp technique. Neutral red accumulation was used to demonstrate the presence of H+-transport over the membrane and to predict membrane orientation. Two types of droplet populations with differently oriented membranes could be formed in an iso-osmotic bath solution. Cytoplasmic droplets (cytosolic side of the tonoplast inside) contained cytoplasm, while the second type of droplet population contained vacuolar sap (vacuolar droplets, vacuolar side of the tonoplast inside). Smaller vesicles also appeared inside the droplets, with an apparently inversely oriented membrane. Confocal laser scanning microscopy indirectly demonstrated that, at least with one of the droplet isolation methods, the plasma membrane entirely remains in the internodal cell after intracellular perfusion. Both types of droplet populations allowed the formation of excised patches and single-channel measurements by the patch clamp technique. Properties of anion channels in the tonoplast could be used to prove the predicted membrane orientation, knowing that Ca2+ can only activate these channels from the cytosolic side. These results provide useful data for studies addressing ligand-binding, block and modulation, organization and interaction of proteins within the membrane or with other regulatory factors, where it is important to control membrane orientation
    corecore