9,157 research outputs found
Impact of future Arctic shipping on high-latitude black carbon deposition
This is the final version of the article. Available from American Geophysical Union (AGU) via the DOI in this record.The retreat of Arctic sea ice has led to renewed calls to exploit Arctic shipping routes. The diversion of ship traffic through the Arctic will shorten shipping routes and possibly reduce global shipping emissions. However, deposition of black carbon (BC) aerosol emitted by additional Arctic ships could cause a reduction in the albedo of snow and ice, accelerating snowmelt and sea ice loss. Here we use recently compiled Arctic shipping emission inventories for 2004 and 2050 together with a global aerosol model to quantify the contribution of future Arctic shipping to high-latitude BC deposition. Our results show that Arctic shipping in 2050 will contribute less than 1% to the total BC deposition north of 60°N due to the much greater relative contribution of BC transported from non-shipping sources at lower latitudes. We suggest that regulation of the Arctic shipping industry will be an insufficient control on high-latitude BC deposition. Key Points Contribution of Arctic shipping to high-latitude BC deposition less than 1% Extra-Arctic sources contribute much greater Arctic BC mass than local shipping Regulation of Arctic shipping unlikely to control high-latitude BC deposition.J.B. was funded by a studentship from the Natural Environment Research Council (NERC) and by the Met Office through a CASE partnership and is now funded by a NERC grant [NE/I028858/1]. K.C. is a Royal Society Wolfson Merit Award holder. A.S.is funded by a NERC grant [NE/I015612/1] and a fellowship from the School of Earth and Environment, University of Leeds. The Editor thanks three anonymous reviewers for their assistance in evaluating this paper
Three People Can Synchronize as Coupled Oscillators during Sports Activities
We experimentally investigated the synchronized patterns of three people during sports activities and found that the activity corresponded to spatiotemporal patterns in rings of coupled biological oscillators derived from symmetric Hopf bifurcation theory, which is based on group theory. This theory can provide catalogs of possible generic spatiotemporal patterns irrespective of their internal models. Instead, they are simply based on the geometrical symmetries of the systems. We predicted the synchronization patterns of rings of three coupled oscillators as trajectories on the phase plane. The interactions among three people during a 3 vs. 1 ball possession task were plotted on the phase plane. We then demonstrated that two patterns conformed to two of the three patterns predicted by the theory. One of these patterns was a rotation pattern (R) in which phase differences between adjacent oscillators were almost 2π/3. The other was a partial anti-phase pattern (PA) in which the two oscillators were anti-phase and the third oscillator frequency was dead. These results suggested that symmetric Hopf bifurcation theory could be used to understand synchronization phenomena among three people who communicate via perceptual information, not just physically connected systems such as slime molds, chemical reactions, and animal gaits. In addition, the skill level in human synchronization may play the role of the bifurcation parameter
Morphology and function of Neandertal and modern human ear ossicles.
The diminutive middle ear ossicles (malleus, incus, stapes) housed in the tympanic cavity of the temporal bone play an important role in audition. The few known ossicles of Neandertals are distinctly different from those of anatomically modern humans (AMHs), despite the close relationship between both human species. Although not mutually exclusive, these differences may affect hearing capacity or could reflect covariation with the surrounding temporal bone. Until now, detailed comparisons were hampered by the small sample of Neandertal ossicles and the unavailability of methods combining analyses of ossicles with surrounding structures. Here, we present an analysis of the largest sample of Neandertal ossicles to date, including many previously unknown specimens, covering a wide geographic and temporal range. Microcomputed tomography scans and 3D geometric morphometrics were used to quantify shape and functional properties of the ossicles and the tympanic cavity and make comparisons with recent and extinct AMHs as well as African apes. We find striking morphological differences between ossicles of AMHs and Neandertals. Ossicles of both Neandertals and AMHs appear derived compared with the inferred ancestral morphology, albeit in different ways. Brain size increase evolved separately in AMHs and Neandertals, leading to differences in the tympanic cavity and, consequently, the shape and spatial configuration of the ossicles. Despite these different evolutionary trajectories, functional properties of the middle ear of AMHs and Neandertals are largely similar. The relevance of these functionally equivalent solutions is likely to conserve a similar auditory sensitivity level inherited from their last common ancestor
Recommended from our members
Landslides on Ceres: Diversity and Geologic Context.
Landslides are among the most widespread geologic features on Ceres. Using data from Dawn's Framing Camera, landslides were previously classified based upon geomorphologic characteristics into one of three archetypal categories, Type 1(T1), Type 2 (T2), and Type 3 (T3). Due to their geologic context, variation in age, and physical characteristics, most landslides on Ceres are, however, intermediate in their morphology and physical properties between the archetypes of each landslide class. Here we describe the varied morphology of individual intermediate landslides, identify geologic controls that contribute to this variation, and provide first-order quantification of the physical properties of the continuum of Ceres's surface flows. These intermediate flows appear in varied settings and show a range of characteristics, including those found at contacts between craters, those having multiple trunks or lobes; showing characteristics of both T2 and T3 landslides; material slumping on crater rims; very small, ejecta-like flows; and those appearing inside of catenae. We suggest that while their morphologies can vary, the distribution and mechanical properties of intermediate landslides do not differ significantly from that of archetypal landslides, confirming a link between landslides and subsurface ice. We also find that most intermediate landslides are similar to Type 2 landslides and formed by shallow failure. Clusters of these features suggest ice enhancement near Juling, Kupalo and Urvara craters. Since the majority of Ceres's landslides fall in the intermediate landslide category, placing their attributes in context contributes to a better understanding of Ceres's shallow subsurface and the nature of ground ice
'Designer atoms' for quantum metrology
Entanglement is recognized as a key resource for quantum computation and
quantum cryptography. For quantum metrology, the use of entangled states has
been discussed and demonstrated as a means of improving the signal-to-noise
ratio. In addition, entangled states have been used in experiments for
efficient quantum state detection and for the measurement of scattering
lengths. In quantum information processing, manipulation of individual quantum
bits allows for the tailored design of specific states that are insensitive to
the detrimental influences of an environment. Such 'decoherence-free subspaces'
protect quantum information and yield significantly enhanced coherence times.
Here we use a decoherence-free subspace with specifically designed entangled
states to demonstrate precision spectroscopy of a pair of trapped Ca+ ions; we
obtain the electric quadrupole moment, which is of use for frequency standard
applications. We find that entangled states are not only useful for enhancing
the signal-to-noise ratio in frequency measurements - a suitably designed pair
of atoms also allows clock measurements in the presence of strong technical
noise. Our technique makes explicit use of non-locality as an entanglement
property and provides an approach for 'designed' quantum metrology
Pulsed Molecular Optomechanics in Plasmonic Nanocavities: From Nonlinear Vibrational Instabilities to Bond-Breaking
Small numbers of surface-bound molecules are shown to behave as would be expected for opto-mechanical oscillators placed inside plasmonic nano-cavities that support extreme confinement of optical fields. Pulsed Raman scattering reveals superlinear Stokes emission above a threshold, arising from the stimulated vibrational pumping of molecular bonds under pulsed excitation shorter than the phonon decay time, and agreeing with pulsed optomechanical quantum theory. Reaching the parametric instability (equivalent to a phonon laser or ‘phaser’ regime) is however hindered by motion of gold atoms and molecular reconfiguration at phonon occupations approaching unity. We show how this irreversible bond breaking can ultimately limit the exploitation of molecules as quantum mechanical oscillators, but accesses optically-driven chemistry
- …