15 research outputs found

    Crystal structure of the membrane attack complex assembly inhibitor BGA71 from the Lyme disease agent Borrelia bavariensis

    Get PDF
    Funding Information: This work was supported by the European Regional Development Fund (ERDF) grant Nr. 1.1.1.2/VIAA/1/16/144 “Structural and functional studies of Lyme disease agent Borrelia burgdorferi outer surface proteins to reveal the mechanisms of pathogenesis with the intention to create a new vaccine”. Diffraction data have been collected on BL14.1 at the BESSY II electron storage ring operated by the Helmholtz-Zentrum, Berlin. We would particularly like to acknowledge the help and support of Manfred S. Weiss and Christian Feiler during the experiment. Publisher Copyright: © 2018, The Author(s).Borrelia (B.) bavariensis, B. burgdorferi, B. afzelii, B. garinii, B. spielmanii, and B. mayonii are the causative agents in Lyme disease. Lyme disease spirochetes reside in infected Ixodes ticks and are transferred to mammalian hosts during tick feeding. Once transmitted, spirochetes must overcome the first line of defense of the innate immune system either by binding complement regulators or by terminating the formation of the membrane attack complex (MAC). In B. bavariensis, the proteins BGA66 and BGA71 inhibit complement activation by interacting with the late complement components C7, C8, and C9, as well as with the formed MAC. In this study, we have determined the crystal structure of the potent MAC inhibitor BGA71 at 2.9 Ǻ resolution. The structure revealed a cysteine cross-linked homodimer. Based on the crystal structure of BGA71 and the structure-based sequence alignment with CspA from B. burgdorferi, we have proposed a potential binding site for C7 and C9, both of which are constituents of the formed MAC. Our results shed light on the molecular mechanism of immune evasion developed by the human pathogenic Borrelia species to overcome innate immunity. These results will aid in the understanding of Lyme disease pathogenesis and pave the way for the development of new strategies to prevent Lyme disease.publishersversionPeer reviewe

    Occupational health risks of pathologists - results from a nationwide online questionnaire in Switzerland

    Get PDF
    BACKGROUND: Pathologists are highly trained medical professionals who play an essential part in the diagnosis and therapy planning of malignancies and inflammatory diseases. Their work is associated with potential health hazards including injuries involving infectious human tissue, chemicals which are assumed to be carcinogenic or long periods of microscope and computer work. This study aimed to provide the first comprehensive assessment of the health situation of pathologists in Switzerland. METHODS: Pathologists in Switzerland were contacted via the Swiss Society of Pathologists and asked to answer an ethically approved, online anonymous questionnaire comprising 48 questions on occupational health problems, workplace characteristics and health behaviour. RESULTS: 163 pathologists participated in the study. Forty percent of pathologists reported musculoskeletal problems in the previous month. The overall prevalence was 76%. Almost 90% of pathologists had visual refraction errors, mainly myopia. 83% of pathologists had experienced occupational injuries, mostly cutting injuries, in their professional career; more than one fifth of participants reported cutting injuries in the last year. However, long lasting injuries and infectious diseases were rare. Depression and burnout affected every eighth pathologist. The prevalence of smoking was substantially below that of the general Swiss population. CONCLUSIONS: The results of this study suggest that more care should be taken in technical and personal protective measures, ergonomic workplace optimisation and reduction of work overload and work inefficiencies. Despite the described health risks, Swiss pathologists were optimistic about their future and their working situation. The high rate of ametropia and psychological problems warrants further study
    corecore