86 research outputs found

    Psychosis Endophenotypes:A Gene-Set-Specific Polygenic Risk Score Analysis

    Get PDF
    Background and Hypothesis:Endophenotypes can help to bridge the gap between psychosis and its genetic predispositions, but their underlying mechanisms remain largely unknown. This study aims to identify biological mechanisms that are relevant to the endophenotypes for psychosis, by partitioning polygenic risk scores into specific gene sets and testing their associations with endophenotypes.Study Design:We computed polygenic risk scores for schizophrenia and bipolar disorder restricted to brain-related gene sets retrieved from public databases and previous publications. Three hundred and seventy-eight gene-set-specific polygenic risk scores were generated for 4506 participants. Seven endophenotypes were also measured in the sample. Linear mixed-effects models were fitted to test associations between each endophenotype and each gene-set-specific polygenic risk score.Study Results:After correction for multiple testing, we found that a reduced P300 amplitude was associated with a higher schizophrenia polygenic risk score of the forebrain regionalization gene set (mean difference per SD increase in the polygenic risk score: −1.15 µV; 95% CI: −1.70 to −0.59 µV; P = 6 × 10−5). The schizophrenia polygenic risk score of forebrain regionalization also explained more variance of the P300 amplitude (R2 = 0.032) than other polygenic risk scores, including the genome-wide polygenic risk scores.Conclusions:Our finding on reduced P300 amplitudes suggests that certain genetic variants alter early brain development thereby increasing schizophrenia risk years later. Gene-set-specific polygenic risk scores are a useful tool to elucidate biological mechanisms of psychosis and endophenotypes, offering leads for experimental validation in cellular and animal models

    Genetic copy number variants, cognition and psychosis: a meta-analysis and a family study

    Get PDF
    Article Open Access Published: 27 July 2020 Genetic copy number variants, cognition and psychosis: a meta-analysis and a family study Johan H. Thygesen, Amelia Presman, […]Elvira Bramon Molecular Psychiatry (2020)Cite this article 561 Accesses 10 Altmetric Metricsdetails Abstract The burden of large and rare copy number genetic variants (CNVs) as well as certain specific CNVs increase the risk of developing schizophrenia. Several cognitive measures are purported schizophrenia endophenotypes and may represent an intermediate point between genetics and the illness. This paper investigates the influence of CNVs on cognition. We conducted a systematic review and meta-analysis of the literature exploring the effect of CNV burden on general intelligence. We included ten primary studies with a total of 18,847 participants and found no evidence of association. In a new psychosis family study, we investigated the effects of CNVs on specific cognitive abilities. We examined the burden of large and rare CNVs (>200 kb, <1% MAF) as well as known schizophrenia-associated CNVs in patients with psychotic disorders, their unaffected relatives and controls (N = 3428) from the Psychosis Endophenotypes International Consortium (PEIC). The carriers of specific schizophrenia-associated CNVs showed poorer performance than non-carriers in immediate (P = 0.0036) and delayed (P = 0.0115) verbal recall. We found suggestive evidence that carriers of schizophrenia-associated CNVs had poorer block design performance (P = 0.0307). We do not find any association between CNV burden and cognition. Our findings show that the known high-risk CNVs are not only associated with schizophrenia and other neurodevelopmental disorders, but are also a contributing factor to impairment in cognitive domains such as memory and perceptual reasoning, and act as intermediate biomarkers of disease risk

    Leveraging human capital to reduce maternal mortality in India: enhanced public health system or public-private partnership?

    Get PDF
    Developing countries are currently struggling to achieve the Millennium Development Goal Five of reducing maternal mortality by three quarters between 1990 and 2015. Many health systems are facing acute shortages of health workers needed to provide improved prenatal care, skilled birth attendance and emergency obstetric services – interventions crucial to reducing maternal death. The World Health Organization estimates a current deficit of almost 2.4 million doctors, nurses and midwives. Complicating matters further, health workforces are typically concentrated in large cities, while maternal mortality is generally higher in rural areas. Additionally, health care systems are faced with shortages of specialists such as anaesthesiologists, surgeons and obstetricians; a maldistribution of health care infrastructure; and imbalances between the public and private health care sectors. Increasingly, policy-makers have been turning to human resource strategies to cope with staff shortages. These include enhancement of existing work roles; substitution of one type of worker for another; delegation of functions up or down the traditional role ladder; innovation in designing new jobs;transfer or relocation of particular roles or services from one health care sector to another. Innovations have been funded through state investment, public-private partnerships and collaborations with nongovernmental organizations and quasi-governmental organizations such as the World Bank. This paper focuses on how two large health systems in India – Gujarat and Tamil Nadu – have successfully applied human resources strategies in uniquely different contexts to the challenges of achieving Millennium Development Goal Five

    Molecular mechanisms and cellular functions of cGAS-STING signalling

    Get PDF
    The cGAS–STING signalling axis, comprising the synthase for the second messenger cyclic GMP–AMP (cGAS) and the cyclic GMP–AMP receptor stimulator of interferon genes (STING), detects pathogenic DNA to trigger an innate immune reaction involving a strong type I interferon response against microbial infections. Notably however, besides sensing microbial DNA, the DNA sensor cGAS can also be activated by endogenous DNA, including extranuclear chromatin resulting from genotoxic stress and DNA released from mitochondria, placing cGAS–STING as an important axis in autoimmunity, sterile inflammatory responses and cellular senescence. Initial models assumed that co-localization of cGAS and DNA in the cytosol defines the specificity of the pathway for non-self, but recent work revealed that cGAS is also present in the nucleus and at the plasma membrane, and such subcellular compartmentalization was linked to signalling specificity of cGAS. Further confounding the simple view of cGAS–STING signalling as a response mechanism to infectious agents, both cGAS and STING were shown to have additional functions, independent of interferon response. These involve non-catalytic roles of cGAS in regulating DNA repair and signalling via STING to NF-κB and MAPK as well as STING-mediated induction of autophagy and lysosome- dependent cell death. We have also learnt that cGAS dimers can multimerize and undergo liquid–liquid phase separation to form biomolecular condensates that could importantly regulate cGAS activation. Here, we review the molecular mechanisms and cellular functions underlying cGAS–STING activation and signalling, particularly highlighting the newly emerging diversity of this signalling pathway and discussing how the specificity towards normal, damage-induced and infection-associated DNA could be achieved
    • …
    corecore