1,019 research outputs found

    The reconstruction of digital holograms on a computational grid

    Get PDF
    Digital holography is greatly extending the range ofholography's applications and moving it from the lab into the field: a single CCD or other solid-state sensor can capture any number of holograms while numerical reconstruction within a computer eliminates the need for chemical development and readily allows further processing and visualisation of the holographic image. The steady increase in sensor pixel count leads to the possibilities of larger sample volumes, while smaller-area pixels enable the practical use of digital off-axis holography. However this increase in pixel count also drives a corresponding expansion of the computational effort needed to numerically reconstruct such holograms to an extent where the reconstruction process for a single depth slice takes significantly longer than the capture process for each single hologram. Grid computing - a recent innovation in large-scale distributed processing - provides a convenient means of harnessing significant computing resources in an ad-hoc fashion that might match the field deployment of a holographic instrument. We describe here the reconstruction of digital holograms on a trans-national computational Grid with over 10 000 nodes available at over 100 sites. A simplistic scheme of deployment was found to provide no computational advantage over a single powerful workstation. Based on these experiences we suggest an improved strategy for workflow and job execution for the replay ofdigital holograms on a Grid

    Grid computing for the numerical reconstruction of digital holograms

    Get PDF
    Digital holography has the potential to greatly extend holography's applications and move it from the lab into the field: a single CCD or other solid-state sensor can capture any number of holograms while numerical reconstruction within a computer eliminates the need for chemical processing and readily allows further processing and visualisation of the holographic image. The steady increase in sensor pixel count and resolution leads to the possibilities of larger sample volumes and of higher spatial resolution sampling, enabling the practical use of digital off-axis holography. However this increase in pixel count also drives a corresponding expansion of the computational effort needed to numerically reconstruct such holograms to an extent where the reconstruction process for a single depth slice takes significantly longer than the capture process for each single hologram. Grid computing - a recent innovation in largescale distributed processing -provides a convenient means of harnessing significant computing resources in an ad-hoc fashion that might match the field deployment of a holographic instrument. In this paper we consider the computational needs of digital holography and discuss the deployment of numericals reconstruction software over an existing Grid testbed. The analysis of marine organisms is used as an exemplar for work flow and job execution of in-line digital holography

    Performance of R-GMA for monitoring grid jobs for CMS data production

    Get PDF
    High energy physics experiments, such as the Compact Muon Solenoid (CMS) at the CERN laboratory in Geneva, have large-scale data processing requirements, with data accumulating at a rate of 1 Gbyte/s. This load comfortably exceeds any previous processing requirements and we believe it may be most efficiently satisfied through grid computing. Furthermore the production of large quantities of Monte Carlo simulated data provides an ideal test bed for grid technologies and will drive their development. One important challenge when using the grid for data analysis is the ability to monitor transparently the large number of jobs that are being executed simultaneously at multiple remote sites. R-GMA is a monitoring and information management service for distributed resources based on the grid monitoring architecture of the Global Grid Forum. We have previously developed a system allowing us to test its performance under a heavy load while using few real grid resources. We present the latest results on this system running on the LCG 2 grid test bed using the LCG 2.6.0 middleware release. For a sustained load equivalent to 7 generations of 1000 simultaneous jobs, R-GMA was able to transfer all published messages and store them in a database for 98% of the individual jobs. The failures experienced were at the remote sites, rather than at the archiver's MON box as had been expected

    Scalability tests of R-GMA-based grid job monitoring system for CMS Monte Carlo data production

    Get PDF
    Copyright @ 2004 IEEEHigh-energy physics experiments, such as the compact muon solenoid (CMS) at the large hadron collider (LHC), have large-scale data processing computing requirements. The grid has been chosen as the solution. One important challenge when using the grid for large-scale data processing is the ability to monitor the large numbers of jobs that are being executed simultaneously at multiple remote sites. The relational grid monitoring architecture (R-GMA) is a monitoring and information management service for distributed resources based on the GMA of the Global Grid Forum. We report on the first measurements of R-GMA as part of a monitoring architecture to be used for batch submission of multiple Monte Carlo simulation jobs running on a CMS-specific LHC computing grid test bed. Monitoring information was transferred in real time from remote execution nodes back to the submitting host and stored in a database. In scalability tests, the job submission rates supported by successive releases of R-GMA improved significantly, approaching that expected in full-scale production
    • …
    corecore