9 research outputs found

    Three-dimensional reconstruction of myocardial contrast perfusion from biplane cineangiograms by means of linear programming techniques

    Get PDF
    The assessment of coronary flow reserve from the instantaneous distribution of the contrast agent within the coronary vessels and myocardial muscle at the control state and at maximal flow has been limited by the superimposition of myocardial regions of interest in the two-dimensional images. To overcome these limitations, we are in the process of developing a three-dimensional (3D) reconstruction technique to compute the contrast distribution in cross sections of the myocardial muscle from two orthogonal cineangiograms. To limit the number of feasible solutions in the 3D-reconstruction space, the 3D-geometry of the endo- and epicardial boundaries of the myocardium must be determined. For the geometric reconstruction of the epicardium, the centerlines of the left coronary arterial tree are manually or automatically traced in the biplane views. Next, the bifurcations are detected automatically and matched in these two views, allowing a 3D-representation of the coronary tree. Finally, the circumference of the left ventricular myocardium in a selected cross section can be computed from the intersection points of this cross section with the 3D coronary tree using B-splines. For the geometric reconstruction of the left ventricular cavity, we envision to apply the elliptical approximation technique using the LV boundaries defined in the two orthogonal views, or by applying more complex 3D-reconstruction techniques including densitometry. The actual 3D-reconstruction of the contrast distribution in the myocardium is based on a linear programming technique (Transportation model) using cost coefficient matrices. Such a cost coefficient matrix must contain a maximum amount of a priori information, provided by a computer generated model and updated with actual data from the angiographic views. We have only begun to solve this complex problem. However, based on our first experimental results we expect that the linear programming approach with advanced cost coefficient matrices and computed model will lead to a

    Automated solvent artifact removal and base plane correction of multidimensional NMR protein spectra by AUREMOL-SSA

    Get PDF
    Strong solvent signals lead to a disappearance of weak protein signals close to the solvent resonance frequency and to base plane variations all over the spectrum. AUREMOL-SSA provides an automated approach for solvent artifact removal from multidimensional NMR protein spectra. Its core algorithm is based on singular spectrum analysis (SSA) in the time domain and is combined with an automated base plane correction in the frequency domain. The performance of the method has been tested on synthetic and experimental spectra including two-dimensional NOESY and TOCSY spectra and a three-dimensional 1H,13C-HCCH-TOCSY spectrum. It can also be applied to frequency domain spectra since an optional inverse Fourier transformation is included in the algorithm.Bundesministerium für Forschung (BMBF)Deutsche Forschungsgemeinschaft (DFG)European UnionFonds der Chemischen Industrie (FCI
    corecore