10 research outputs found

    The influence of carbon dioxide on brain activity and metabolism in conscious humans

    No full text
    A better understanding of carbon dioxide (CO2) effect on brain activity may have a profound impact on clinical studies using CO2 manipulation to assess cerebrovascular reserve and on the use of hypercapnia as a means to calibrate functional magnetic resonance imaging (fMRI) signal. This study investigates how an increase in blood CO2, via inhalation of 5% CO2, may alter brain activity in humans. Dynamic measurement of brain metabolism revealed that mild hypercapnia resulted in a suppression of cerebral metabolic rate of oxygen (CMRO2) by 13.4%±2.3% (N=14) and, furthermore, the CMRO2 change was proportional to the subject's end-tidal CO2 (Et-CO2) change. When using functional connectivity MRI (fcMRI) to assess the changes in resting-state neural activity, it was found that hypercapnia resulted in a reduction in all fcMRI indices assessed including cluster volume, cross-correlation coefficient, and amplitude of the fcMRI signal in the default-mode network (DMN). The extent of the reduction was more pronounced than similar indices obtained in visual-evoked fMRI, suggesting a selective suppression effect on resting-state neural activity. Scalp electroencephalogram (EEG) studies comparing hypercapnia with normocapnia conditions showed a relative increase in low frequency power in the EEG spectra, suggesting that the brain is entering a low arousal state on CO2 inhalation

    Brain imaging in RBD.

    No full text
    Neuroimaging studies can provide in vivo insights to the early structural and functional brain changes in patients with idiopathic RBD (iRBD) and may help give a prognosis of disease course. This chapter summarizes the major findings of neuroimaging studies in iRBD, a specific prodromal stage of Parkinson’s disease (PD) and other α-synucleinopathies. Molecular imaging techniques, magnetic resonance imaging (MRI), and transcranial sonography (TCS) are all discussed

    Pharmacosynthetic Deconstruction of Sleep-Wake Circuits in the Brain.

    No full text
    Over the past decade, basic sleep research investigating the circuitry controlling sleep and wakefulness has been boosted by pharmacosynthetic approaches, including chemogenetic techniques using designed receptors exclusively activated by designer drugs (DREADD). DREADD offers a series of tools that selectively control neuronal activity as a way to probe causal relationship between neuronal sub-populations and the regulation of the sleep-wake cycle. Following the path opened by optogenetics, DREADD tools applied to discrete neuronal sub-populations in numerous brain areas quickly made their contribution to the discovery and the expansion of our understanding of critical brain structures involved in a wide variety of behaviors and in the control of vigilance state architecture.info:eu-repo/semantics/publishe
    corecore