13 research outputs found

    Economic weights for feed intake in the growing pig derived from a growth model and an economic model

    Get PDF
    Economic weights are obtained for feed intake using a growth model and an economic model. The underlying concept of the growth model is the linear plateau model. Parameters of this model are the marginal ratio (MR) of extra fat and extra protein deposition with increasing feed intake (FI) and the maximum protein deposition (Pdmax). The optimum feed intake (FI0) is defined as the minimum feed intake that meets energy requirements for Pdmax. The effect of varying FI and MR on performance traits was determined.An increase in FI results in a larger increase in growth rate with lower MR. For a given MR, feed conversion ratio is lowest when FI equals FI0. Lean meat percentage (LMP) is largest for a low MR in combination with a low FI. The decrease in LMP with higher FI is largest when FI exceeds FI0.Economic weights for FI, MR and Pdmax depend on FI in relation to FI0.Economic weights for FI are positive when FI is less than FI0 and negative when FI is larger than FI0. The MR has only then a negative economic weight, when FI is below FI0.Economic weights of FI and MR have a larger magnitude with lower MR and lower FI. In contrast, economic weights for growth rate and FI derived from the economic model only change in magnitude and not in sign with different levels of these traits. The economic model always puts a negative economic weight on FI since it expresses profit due to a decrease in FI with constant growth rate and LMP. This holds the risk of continuous decrease in FI in pig breeding programs. In contrast, the use of growth models for genetic improvement allows direct selection for an optimum feed intake which maximizes feed efficiency in combination with maximum lean meat growth. It is concluded that recording procedures have to be adapted to collect the data necessary to implement growth models in practical pig breeding applications

    Impact Factor: outdated artefact or stepping-stone to journal certification?

    Full text link
    A review of Garfield's journal impact factor and its specific implementation as the Thomson Reuters Impact Factor reveals several weaknesses in this commonly-used indicator of journal standing. Key limitations include the mismatch between citing and cited documents, the deceptive display of three decimals that belies the real precision, and the absence of confidence intervals. These are minor issues that are easily amended and should be corrected, but more substantive improvements are needed. There are indications that the scientific community seeks and needs better certification of journal procedures to improve the quality of published science. Comprehensive certification of editorial and review procedures could help ensure adequate procedures to detect duplicate and fraudulent submissions.Comment: 25 pages, 12 figures, 6 table

    An overview: origins and development of green chemistry

    No full text
    This article provides an overview of the origins and development of green chemistry. Aiming to contribute to the understanding of green chemistry, basically from a historical point of view, this overview argues that contextual influences and the user friendliness of the term are drivers for the explosive growth of green chemistry. It is observed that political support for its development has been significant, in which the Pollution Prevention Act of 1990 was a formal political starting-point, but informally the origins of green chemistry go back to before 1990. US EPA played an important role in all this, but did not solely contribute to the growth of green chemistry
    corecore