94 research outputs found
Concurrent hypermethylation of DNMT1, MGMT and EGFR genes in progression of gliomas
<p>Abstract</p> <p>Background</p> <p>Gliomas are the most common neoplasm of the brain. High-grade gliomas often resist treatment even with aggressive surgical resection and adjuvant radiation and chemotherapy. Despite the combined treatment, they frequently recur with the same or higher-grade histology. Genetic instability is commonly associated with inactivation of the normal DNA repair function and tumour suppressor genes as well as activation of oncogenes resulting from alterations of promoter hypermethylation, but the molecular mechanisms of the histological and clinical progression of gliomas are still poorly understood.</p> <p>Methods</p> <p>This study involved longitudinal analysis samples of primary and recurrent gliomas to determine whether the progression of low- and high-grade gliomas is associated with the promoter methylation of the DNMT1, MGMT and EGFR genes by PCR-based restriction enzyme assay. Epigenetic inactivation of these three important glioma-associated genes was analyzed in paired biopsy samples from 18 patients with tumour recurrence.</p> <p>Results</p> <p>The methylation analysis of the CpG sites in the DNA methyltransferase (DNMT1) promoter revealed a total of 6 hypermethylations (6/18), the methylguanine-DNA methyltransferase (MGMT) promoter revealed a total of 10 hypermethylations (10/18) and the epithelial grow factor receptor (EGFR) promoter revealed a total of 12 (12/18) hypermethylations respectively in recurrent gliomas. The results demonstrated that DNMT1 promoter hypermethylation does not occur in low-grade gliomas, it was mainly observed in secondary glioblastomas. Additionally, the MGMT and EGFR promoter was hypermethylated in both low-and high-grade GLs and their corresponding histological transformed GLs.</p> <p>Conclusion</p> <p>This study has provided further evidence that the histological transformation and progression of gliomas may be associated with the inactivation of the EGFR and MGMT genes. It seems that EGFR and MGMT promoter hypermethylations are early events in the clonal evolution of gliomas and this gene inactivation has proved to be stable even in tumour recurrence. However, the DNMT hypermethylation is a late part of glioma progression.</p> <p>Virtual slides</p> <p>The virtual slide(s) for this article can be found here: <url>http://www.diagnosticpathology.diagnomx.eu/vs/1935054011612460</url></p
Development of selective agonists and antagonists of P2Y receptors
Although elucidation of the medicinal chemistry of agonists and antagonists of the P2Y receptors has lagged behind that of many other members of group A G protein-coupled receptors, detailed qualitative and quantitative structure–activity relationships (SARs) were recently constructed for several of the subtypes. Agonists selective for P2Y1, P2Y2, and P2Y6 receptors and nucleotide antagonists selective for P2Y1 and P2Y12 receptors are now known. Selective nonnucleotide antagonists were reported for P2Y1, P2Y2, P2Y6, P2Y11, P2Y12, and P2Y13 receptors. At the P2Y1 and P2Y12 receptors, nucleotide agonists (5′-diphosphate derivatives) were converted into antagonists of nanomolar affinity by altering the phosphate moieties, with a focus particularly on the ribose conformation and substitution pattern. Nucleotide analogues with conformationally constrained ribose-like rings were introduced as selective receptor probes for P2Y1 and P2Y6 receptors. Screening chemically diverse compound libraries has begun to yield new lead compounds for the development of P2Y receptor antagonists, such as competitive P2Y12 receptor antagonists with antithrombotic activity. Selective agonists for the P2Y4, P2Y11, and P2Y13 receptors and selective antagonists for P2Y4 and P2Y14 receptors have not yet been identified. The P2Y14 receptor appears to be the most restrictive of the class with respect to modification of the nucleobase, ribose, and phosphate moieties. The continuing process of ligand design for the P2Y receptors will aid in the identification of new clinical targets
Computational Modeling-Based Discovery of Novel Classes of Anti-Inflammatory Drugs That Target Lanthionine Synthetase C-Like Protein 2
Background: Lanthionine synthetase component C-like protein 2 (LANCL2) is a member of the eukaryotic lanthionine synthetase component C-Like protein family involved in signal transduction and insulin sensitization. Recently, LANCL2 is a target for the binding and signaling of abscisic acid (ABA), a plant hormone with anti-diabetic and anti-inflammatory effects. Methodology/Principal Findings: The goal of this study was to determine the role of LANCL2 as a potential therapeutic target for developing novel drugs and nutraceuticals against inflammatory diseases. Previously, we performed homology modeling to construct a three-dimensional structure of LANCL2 using the crystal structure of lanthionine synthetase component C-like protein 1 (LANCL1) as a template. Using this model, structure-based virtual screening was performed using compounds from NCI (National Cancer Institute) Diversity Set II, ChemBridge, ZINC natural products, and FDAapproved drugs databases. Several potential ligands were identified using molecular docking. In order to validate the antiinflammatory efficacy of the top ranked compound (NSC61610) in the NCI Diversity Set II, a series of in vitro and pre-clinical efficacy studies were performed using a mouse model of dextran sodium sulfate (DSS)-induced colitis. Our findings showed that the lead compound, NSC61610, activated peroxisome proliferator-activated receptor gamma in a LANCL2- and adenylate cyclase/cAMP dependent manner in vitro and ameliorated experimental colitis by down-modulating colonic inflammatory gene expression and favoring regulatory T cell responses
Melanoma: A model for testing new agents in combination therapies
Treatment for both early and advanced melanoma has changed little since the introduction of interferon and IL-2 in the early 1990s. Recent data from trials testing targeted agents or immune modulators suggest the promise of new strategies to treat patients with advanced melanoma. These include a new generation of B-RAF inhibitors with greater selectivity for the mutant protein, c-Kit inhibitors, anti-angiogenesis agents, the immune modulators anti-CTLA4, anti-PD-1, and anti-CD40, and adoptive cellular therapies. The high success rate of mutant B-RAF and c-Kit inhibitors relies on the selection of patients with corresponding mutations. However, although response rates with small molecule inhibitors are high, most are not durable. Moreover, for a large subset of patients, reliable predictive biomarkers especially for immunologic modulators have not yet been identified. Progress may also depend on identifying additional molecular targets, which in turn depends upon a better understanding of the mechanisms leading to response or resistance. More challenging but equally important will be understanding how to optimize the treatment of individual patients using these active agents sequentially or in combination with each other, with other experimental treatment, or with traditional anticancer modalities such as chemotherapy, radiation, or surgery. Compared to the standard approach of developing new single agents for licensing in advanced disease, the identification and validation of patient specific and multi-modality treatments will require increased involvement by several stakeholders in designing trials aimed at identifying, even in early stages of drug development, the most effective way to use molecularly guided approaches to treat tumors as they evolve over time
Onconase responsive genes in human mesothelioma cells: implications for an RNA damaging therapeutic agent
<p>Abstract</p> <p>Background</p> <p>Onconase represents a new class of RNA-damaging drugs. Mechanistically, Onconase is thought to internalize, where it degrades intracellular RNAs such as tRNA and double-stranded RNA, and thereby suppresses protein synthesis. However, there may be additional or alternative mechanism(s) of action.</p> <p>Methods</p> <p>In this study, microarray analysis was used to compare gene expression profiles in untreated human malignant mesothelioma (MM) cell lines and cells exposed to 5 μg/ml Onconase for 24 h. A total of 155 genes were found to be regulated by Onconase that were common to both epithelial and biphasic MM cell lines. Some of these genes are known to significantly affect apoptosis (IL-24, TNFAIP3), transcription (ATF3, DDIT3, MAFF, HDAC9, SNAPC1) or inflammation and the immune response (IL-6, COX-2). RT-PCR analysis of selected up- or down-regulated genes treated with varying doses and times of Onconase generally confirmed the expression array findings in four MM cell lines.</p> <p>Results</p> <p>Onconase treatment consistently resulted in up-regulation of IL-24, previously shown to have tumor suppressive activity, as well as ATF3 and IL-6. Induction of ATF3 and the pro-apoptotic factor IL-24 by Onconase was highest in the two most responsive MM cell lines, as defined by DNA fragmentation analysis. In addition to apoptosis, gene ontology analysis indicated that pathways impacted by Onconase include MAPK signaling, cytokine-cytokine-receptor interactions, and Jak-STAT signaling.</p> <p>Conclusions</p> <p>These results provide a broad picture of gene activity after treatment with a drug that targets small non-coding RNAs and contribute to our overall understanding of MM cell response to Onconase as a therapeutic strategy. The findings provide insights regarding mechanisms that may contribute to the efficacy of this novel drug in clinical trials of MM patients who have failed first line chemotherapy or radiation treatment.</p
Constraining radio mode feedback in galaxy clusters with the cluster radio AGNs properties to z ∼ 1
We study the properties of the Sydney University Molonglo Sky Survey (SUMSS) 843 MHz radio active galactic nuclei (AGNs) population in galaxy clusters from two large catalogues created using the Dark Energy Survey (DES): ∼11 800 optically selected RM-Y3 and ∼1000 X-ray selected MARD-Y3 clusters. We show that cluster radio loud AGNs are highly concentrated around cluster centres to z ∼ 1. We measure the halo occupation number for cluster radio AGNs above a threshold luminosity, finding that the number of radio AGNs per cluster increases with cluster halo mass as N ∝ M1.2 ± 0.1 (N ∝ M0.68 ± 0.34) for the RM-Y3 (MARD-Y3) sample. Together, these results indicate that radio mode feedback is favoured in more massive galaxy clusters. Using optical counterparts for these sources, we demonstrate weak redshift evolution in the host broad-band colours and the radio luminosity at fixed host galaxy stellar mass. We use the redshift evolution in radio luminosity to break the degeneracy between density and luminosity evolution scenarios in the redshift trend of the radio AGNs luminosity function (LF). The LF exhibits a redshift trend of the form (1 + z)γ in density and luminosity, respectively, of γD = 3.0 ± 0.4 and γP = 0.21 ± 0.15 in the RM-Y3 sample, and γD = 2.6 ± 0.7 and γP = 0.31 ± 0.15 in MARD-Y3. We discuss the physical drivers of radio mode feedback in cluster AGNs, and we use the cluster radio galaxy LF to estimate the average radio-mode feedback energy as a function of cluster mass and redshift and compare it to the core (<0.1R500) X-ray radiative losses for clusters at z < 1
The PSZ-MCMF catalogue of Planck clusters over the des region
We present the first systematic follow-up of Planck Sunyaev–Zeldovich effect (SZE) selected candidates down to signal-to-noise (S/N) of 3 over the 5000 deg2 covered by the Dark Energy Survey. Using the MCMF cluster confirmation algorithm, we identify optical counterparts, determine photometric redshifts, and richnesses and assign a parameter, fcont, that reflects the probability that each SZE-optical pairing represents a random superposition of physically unassociated systems rather than a real cluster. The new PSZ-MCMF cluster catalogue consists of 853 MCMF confirmed clusters and has a purity of 90 per cent. We present the properties of subsamples of the PSZ-MCMF catalogue that have purities ranging from 90 per cent to 97.5 per cent, depending on the adopted fcont threshold. Halo mass estimates M500, redshifts, richnesses, and optical centres are presented for all PSZ-MCMF clusters. The PSZ-MCMF catalogue adds 589 previously unknown Planck identified clusters over the DES footprint and provides redshifts for an additional 50 previously published Planck-selected clusters with S/N>4.5. Using the subsample with spectroscopic redshifts, we demonstrate excellent cluster photo-z performance with an RMS scatter in Δz/(1 + z) of 0.47 per cent. Our MCMF based analysis allows us to infer the contamination fraction of the initial S/N>3 Planck-selected candidate list, which is ∼50 per cent. We present a method of estimating the completeness of the PSZ-MCMF cluster sample. In comparison to the previously published Planck cluster catalogues, this new S/N>3 MCMF confirmed cluster catalogue populates the lower mass regime at all redshifts and includes clusters up to z∼1.3
Characterizing the intracluster light over the redshift range 0.2 < z < 0.8 in the DES-ACT overlap
We characterize the properties and evolution of bright central galaxies (BCGs) and the surrounding intracluster light (ICL) in galaxy clusters identified in the Dark Energy Survey and Atacama Cosmology Telescope Survey (DES-ACT) overlapping regions, covering the redshift range 0.20 14.4. We also measure the stellar mass–halo mass (SMHM) relation for the BCG+ICL system and find that the slope, β, which characterizes the dependence of M200m,SZ on the BCG+ICL stellar mass, increases with radius. The outskirts are more strongly correlated with the halo than the core, which supports that the BCG+ICL system follows a two-phase growth, where recent growth (z < 2) occurs beyond the BCG’s core. Additionally, we compare our observed SMHM relation results to the IllustrisTNG300-1 cosmological hydrodynamic simulations and find moderate qualitative agreement in the amount of diffuse light. However, the SMHM relation’s slope is steeper in TNG300-1 and the intrinsic scatter is lower, likely from the absence of projection effects in TNG300-1. Additionally, we find that the ICL exhibits a colour gradient such that the outskirts are bluer than the core. Moreover, for the lower halo mass clusters (log10(M200m,SZ/M⊙) < 14.59), we detect a modest change in the colour gradient’s slope with lookback time, which combined with the absence of stellar mass growth may suggest that lower mass clusters have been involved in growth via tidal stripping more recently than their higher mass counterparts
The Observed Evolution of the Stellar Mass-Halo Mass Relation for Brightest Central Galaxies
We quantify evolution in the cluster-scale stellar mass–halo mass (SMHM) relation's parameters using 2323 clusters and brightest central galaxies (BCGs) over the redshift range 0.03 ≤ z ≤ 0.60. The precision on the inferred SMHM parameters is improved by including the magnitude gap (mgap) between the BCG and fourth-brightest cluster member (M14) as a third parameter in the SMHM relation. At fixed halo mass, accounting for mgap, through a stretch parameter, reduces the SMHM relation's intrinsic scatter. To explore this redshift range, we use clusters, BCGs, and cluster members identified using the Sloan Digital Sky Survey C4 and redMaPPer cluster catalogs and the Dark Energy Survey redMaPPer catalog. Through this joint analysis, we detect no systematic differences in BCG stellar mass, mgap, and cluster mass (inferred from richness) between the data sets. We utilize the Pareto function to quantify each parameter's evolution. We confirm prior findings of negative evolution in the SMHM relation's slope (3.5σ), and detect negative evolution in the stretch parameter (4.0σ) and positive evolution in the offset parameter (5.8σ). This observed evolution, combined with the absence of BCG growth, when stellar mass is measured within 50 kpc, suggests that this evolution results from changes in the cluster's mgap. For this to occur, late-term growth must be in the intracluster light surrounding the BCG. We also compare the observed results to IllustrisTNG 300-1 cosmological hydrodynamic simulations and find modest qualitative agreement. However, the simulations lack the evolutionary features detected in the real data
Exploring the contamination of the DES-Y1 cluster sample with SPT-SZ selected clusters
We perform a cross validation of the cluster catalogue selected by the red-sequence Matched-filter Probabilistic Percolation algorithm (redMaPPer) in Dark Energy Survey year 1 (DES-Y1) data by matching it with the Sunyaev–Zel’dovich effect (SZE) selected cluster catalogue from the South Pole Telescope SPT-SZ survey. Of the 1005 redMaPPer selected clusters with measured richness λ̂ >40
in the joint footprint, 207 are confirmed by SPT-SZ. Using the mass information from the SZE signal, we calibrate the richness–mass relation using a Bayesian cluster population model. We find a mass trend λ ∝ MB consistent with a linear relation (B ∼ 1), no significant redshift evolution and an intrinsic scatter in richness of σλ = 0.22 ± 0.06. By considering two error models, we explore the impact of projection effects on the richness–mass modelling, confirming that such effects are not detectable at the current level of systematic uncertainties. At low richness SPT-SZ confirms fewer redMaPPer clusters than expected. We interpret this richness dependent deficit in confirmed systems as due to the increased presence at low richness of low-mass objects not correctly accounted for by our richness-mass scatter model, which we call contaminants. At a richness λ̂ =40
, this population makes up >12 per cent (97.5 percentile) of the total population. Extrapolating this to a measured richness λ̂ =20 yields >22 per cent
(97.5 percentile). With these contamination fractions, the predicted redMaPPer number counts in different plausible cosmologies are compatible with the measured abundance. The presence of such a population is also a plausible explanation for the different mass trends (B ∼ 0.75) obtained from mass calibration using purely optically selected clusters. The mean mass from stacked weak lensing (WL) measurements suggests that these low-mass contaminants are galaxy groups with masses ∼3–5 × 1013 M⊙ which are beyond the sensitivity of current SZE and X-ray surveys but a natural target for SPT-3G and eROSITA
- …